LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Preprint
Subjects: Astrophysics - Astrophysics of Galaxies, Astrophysics - High Energy Astrophysical Phenomena

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Galaxy Astrophysics
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc co-rotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are $\gtrsim 25$ times larger than those for a disc rotating in one direction with the same viscosity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alig, C., Schartmann, M., Burkert, A., & Dolag, K. 2013, ApJ, 771, 119
    • Braun, R., Walterbos, R.A.M., Kennicutt, R.C., Tacconi, L.J., 1994, ApJ, 420, 558
    • Chakrabarty, D., Bildsten, L., Finger, M. H., Grunsfeld, J. M., Koh, D. T., Nelson, R. W., Prince, T. A., Vaughan, B. A., & Wilson, R. B. 1997, ApJ, 481, L101
    • Choudhury, S.,R., Lovelace, R.V.E, 1983, ApJ, 283, 331
    • Ciri, R., Bettoni, & Galletta, G. 1995, Nature, 375, 661
    • Comins, N.F., Lovelace, R.V.E., Zeltwanger, T., & Shorey, P. 1997, ApJ, 484, L33
    • Corsini, E.M. 2014, in Counter-Rotation in Disk Galaxies, ASP Conference Series, Vol. 486, Eds. E. Iodice & E. M. Corsini (ASP: San Francisco), p. 51
    • Galetta, G. 1996, in Barred Galaxies, IAU Colloq. 157, Eds. R. Buta, D. Crocker, & B. Elmegreen, ASP Conference Series, 91, 11
    • Gulati, M., Tarun, D.S., & Sridhar, S. 2012, MNRAS, 424, 348
    • Kuznetsov, O. A., Lovelace, R. V. E., Romanova, M. M., & Chechetkin, V. M. 1999, ApJ, 514, 691
    • Li, L., & Narayan, R., 2004, ApJ, 601, 414
    • Lii, P., Romanova, M.M., & Lovelace, R.V.E. 2012, MNRAS, 420, 202
    • Lovelace, R.V.E., & Chou, T., 1996, ApJ, 468, L25
    • Lovelace, R.V.E., Jore, K.P., & Haynes, M.P. 1997, ApJ, 475, 83
    • Nelson, R. W., Bildsten, L., Chakrabarty, D., Finger, M. H., Koh, D. T., Prince, T.A., Rubin, B. C., Scott, D. M., Vaughan, B. A., & Wilson, R, B. 1997, ApJ, 488, L117
    • Nixon, C.J., King, A.R., Price, D.J., 2012, MNRAS, 422, 2547
    • Quach, D., Dyda, S., & Lovelace, R.V.E. 2014, MNRAS, submitted
    • Ray, T.P. 1981, MNRAS, 196, 195
    • Ray, T.P. 1982, MNRAS, 198, 617
    • Rubin, V.C., Graham, J.A., Kenney, J.D.P. 1992, ApJ, 394, L9
    • Rubin, 1994, AJ, 107, 173
    • Rubin, 1994, AJ, 108, 456
    • Lii, P., Romanova, M.M., & Lovelace, R.V.E. 2012, MNRAS, 420, 2020
    • Sage, L.J., & Galletta, G., 1994, ApJ, 108, 1633S.
    • Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337
    • Tang, Y.W., Guilloteau, S., Pietu, V., Dutrey, A., Ohashi, N., & Ho, P.T.P., 2012, A & A, 547, A84
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from