Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
24 documents, page 1 of 3

Analysis of accuracy in pointing with redundant hand-held tools: a geometric approach to the uncontrolled manifold method.

Author Summary Daily motor tasks typically involve more degrees-of-freedom than strictly required. For instance, pressing a button in the elevator only requires positioning the fingertip at a three-dimensional location in space. However, to move the arm we need to control many more degrees-of-freedom (at least seven, only considering the shoulder, elbow and wrist) than required by the task, each with its own variability due to physiological factors such as tremor. Variability at proximal join...

Centroidal Momentum Analysis for Defining a Stability Index for Human-Exoskeleton Interactive Walking : Perturbation Detection in Human Gait

Recently, exoskeletons have been in the spotlight as many studies demonstrated the effectiveness of the exoskeletons as a means that enables to not only resolve long-standing issues such as increase of societal burden for the care of ageing populations but also augments productivity in several fields, such as rehabilitation and industrial fields. In particular, lower limb exoskeletons have attracted the medical field, especially related to the ageing society due to its impact on augmentation ...

A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses

Background The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to assess normative balance responses to perturbations in transversal plane in a group of neurologically healthy individ...

Walking in circles: a modelling approach

Blindfolded or disoriented people have the tendency to walk in circles rather than on a straight line even if they wanted to. Here, we use a minimalistic walking model to examine this phenomenon. The bipedal spring-loaded inverted pendulum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and ground reaction forces similar to human walking in the sagittal plane. We extend this model into three dimensions, and show that stable walking patterns persist if the leg is aligne...

Robot-supported assessment of balance in standing and walking

Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for a...