Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Search filters

Refine by

Publication Year

2013 (1)
2015 (1)

Access Mode

Document Type

Article (3)
Preprint (1)

Document Language

English (3)
3 documents, page 1 of 1

Multi-species distribution modeling using penalized mixture of regressions

Hui, Francis K. C.; Warton, David I.; Foster, Scott D. (2015)
Projects: ARC | Advancing tools for the analysis of high-dimensional data in ecology (FT120100501)
Multi-species distribution modeling, which relates the occurrence of multiple species to environmental variables, is an important tool used by ecologists for both predicting the distribution of species in a community and identifying the important variables driving species co-occurrences. Recently, Dunstan, Foster and Darnell [Ecol. Model. 222 (2011) 955-963] proposed using finite mixture of regression (FMR) models for multi-species distribution modeling, where species are clustered based on t...

The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap metho...

Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology

Presence-only data, where information is available concerning species presence but not species absence, are subject to bias due to observers being more likely to visit and record sightings at some locations than others (hereafter “observer bias”). In this paper, we describe and evaluate a model-based approach to accounting for observer bias directly – by modelling presence locations as a function of known observer bias variables (such as accessibility variables) in addition to environmental v...