Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
S Girgis, Hany; Liu, Yirchung; S Ryu, William; Tavazoie, Saeed (2007)
Publisher: Figshare
Type: dataset
Subjects: Biophysics, Microbiology, Genetics, Molecular Biology, Biotechnology, Evolutionary Biology, Ecology, Developmental Biology, Science Policy, 59999 Environmental Sciences not elsewhere classified, 69999 Biological Sciences not elsewhere classified, double-mutant phenotypes, uncovers genome-wide epistatic interactions, genes function, comprehensive genetic characterization, escherichia coli motility, rcs phosphorelay pathway, cyclic di-gmp second-messenger system, dozen novel loci, chemotaxis genes, bacterial motility, method, framework, novel genes, network context

We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere.

Share - Bookmark

Download from

Funded by projects

No projects found

Cite this research data

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok