LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Refine by

Publication Year

2015 (6)
2016 (6)
2012 (5)
2014 (5)
2017 (2)
View more
Publication Year

2015 (6)
2016 (6)
2012 (5)
2014 (5)
2017 (2)
2001 (1)
2002 (1)
2004 (1)
2007 (1)
2008 (1)
2009 (1)
2013 (1)
2018 (1)

Access Mode

Document Type

Article (32)
Preprint (4)
Unknown (1)

Document Language

  • 33 documents, page 1 of 4

    Mass, Momentum and Energy of Gravitational Field

    Fedosin, Sergey G. (2008)
    The energy of the gravitational field and the mass related to it are calculated. The momentum of the gravitational field of a moving body and the appropriate mass of the field are determined. Comparison of the given masses shows their difference. The reasons of violation of relativity and equivalence principles are discussed.

    The procedure of finding the stress-energy tensor and equations of vector field of any form

    Fedosin, Sergey G. (2014)
    A method allowing us to introduce into the Lagrangian the terms, which characterize an arbitrary vector field of a system, is described. As a result of applying the principle of least action it becomes possible to find all the main characteristics of this field, including its energy and momentum, field equations, force of interaction with the matter.

    The General Theory of Relativity, Metric Theory of Relativity and Covariant Theory of Gravitation. Axiomatization and Critical Analysis

    Fedosin, Sergey G. (2014)
    The axiomatization of general theory of relativity (GR) is done. The axioms of GR are compared with the axioms of the metric theory of relativity and the covariant theory of gravitation. The need to use the covariant form of the total derivative with respect to the proper time of the invariant quantities, the 4-vectors and tensors is indicated. The definition of the 4-vector of force density in Riemannian spacetime is deduced.

    Electron-Ionic Model of Ball Lightening

    Fedosin, Sergey G.; Kim, Anatolii S. (2001)
    The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.

    The Pioneer Anomaly in Covariant Theory of Gravitation

    Fedosin, Sergey G. (2015)
    The difference of equations of motion in the covariant theory of gravitation and in the general theory of relativity is used to explain the Pioneer anomaly. Calculation shows that the velocities of a spacecraft in both theories at equal distances can differ by several centimetres per second. This leads also to a possible explanation of the flyby anomaly and comet disturbances which are not taken into account by the general theory of relativity.

    Model of Gravitational Interaction in the Concept of Gravitons

    Fedosin, Sergey G. (2009)
    The law of Newton for the attraction of bodies is derived with the help of the concept of gravitons. The expression for the gravitational constant is obtained through the momentum of gravitons and the absorption coefficient. Calculations of the values of the coefficient of absorption and of the energy power of flows of gravitons in the space were made. It is shown that during the movement with constant speed the law of inertia is acting.

    The Moment of Momentum and the Proton Radius

    Fedosin, Sergey G.; Kim, Anatolii S. (2002)
    The theory of nuclear gravitation is used to calculate the moment of momentum of the gravitational field of a proton, which is compared to the corresponding moment of momentum of the electromagnetic field. As a result, the proton radius is estimated and a relation for the moment of momentum of the field is established, which coincides in form with the expression of the virial theorem for energy.

    The Metric Outside a Fixed Charged Body in the Covariant Theory of Gravitation

    Fedosin, Sergey G. (2014)
    The metric outside a charged body is calculated. As part of the given approach it is shown that the gravitational and electromagnetic fields are equally involved in the formation of the metric tensor components. And the contribution of fields in the metric is proportional to the energy of these fields. From equations for the metric it follows that the metric tensor components are determined up to two constants.

    4/3 Problem for the Gravitational Field

    Fedosin, Sergey G. (2013)
    The gravitational field potentials outside and inside a uniform massive ball were determined using the superposition principle, the method of retarded potentials and Lorentz transformations. The gravitational field strength, the torsion field, the energy and the momentum of the field, as well as the effective masses associated with the field energy and its momentum were calculated. It was shown that 4/3 problem existed for the gravitational field as well as in the case of the electromagnetic ...

    The radius of the proton in the self-consistent model

    Fedosin, Sergey G. (2012)
    Based on the notion of strong gravitation, acting at the level of elementary particles, and on the equality of the magnetic moment of the proton and the limiting magnetic moment of the rotating non-uniformly charged ball, the radius of the proton is found, which conforms to the experimental data. At the same time the dependence is derived of distribution of the mass and charge density inside the proton. The ratio of the density in the center of the proton to the average density is found, whic...