LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Discovery Projects - Grant ID: DP150103313

Title
Discovery Projects - Grant ID: DP150103313
Funding
ARC | Discovery Projects
Contract (GA) number
DP150103313
Start Date
2015/01/01
End Date
2017/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP150103313

 

  • Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation.

    Shane E Gordon; Daniel K Weber; Matthew T Downton; John Wagner; Matthew A Perugini (2016)
    Projects: ARC | Discovery Projects - Grant ID: DP150103313 (DP150103313)
    Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov st...

    Structure and Function of Cyanobacterial DHDPS and DHDPR

    Janni B. Christensen; T. P. Soares da Costa; Pierre Faou; F. Grant Pearce; Santosh Panjikar; Matthew A. Perugini (2016)
    Projects: ARC | Discovery Projects - Grant ID: DP150103313 (DP150103313), NHMRC | Broad Spectrum Inhibition of an Enzyme Antibiotic Target (1091976)
    Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been repor...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok