You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
The Hong-Ou-Mandel (HOM) effect is a striking demonstration of destructive quantum interference between pairs of indistinguishable bosons, realised so far only with massless photons. Here we propose an experiment which can realise this effect in the matter-wave regime using pair-correlated atoms produced via a collision of two Bose-Einstein condensates and subjected to two laser induced Bragg pulses. We formulate a novel measurement protocol appropriate for the multimode matter-wave field, wh...
We examine the prospect of demonstrating Einstein-Podolsky-Rosen (EPR) entanglement for massive particles using spin-changing collisions in a spinor Bose-Einstein condensate. Such a demonstration has recently been attempted by Gross et al. [Nature 480, 219 (2011)] using a condensate of Rb-87 atoms trapped in an optical lattice potential. For the condensate initially prepared in the (F,m_{F})=(2,0) hyperfine state, with no population in the m_{F}=+-1 states, we predict a significant suppressio...
We propose and theoretically simulate an experiment for demonstrating a motional-state Bell inequality violation for pairs of momentum-entangled atoms produced in Bose-Einstein condensate collisions. The proposal is based on realizing an atom-optics analog of the Rarity-Tapster optical scheme: it uses laser-induced Bragg pulses to implement two-particle interferometry on the underlying Bell-state for two pairs of atomic scattering modes with equal but opposite momenta. The collision dynamics ...
12 pages, 10 figures; International audience; We report the experimental realization of a single-species atomic four-wave mixing process with BEC collisions for which the angular distribution of scattered atom pairs is not isotropic, despite the collisions being in the s-wave regime. Theoretical analysis indicates that this anomalous behavior can be explained by the anisotropic nature of the gain in the medium when the source clouds are not cylindrically symmetric around the collision axis. T...
We consider the Wigner quasi-probability distribution function of a single mode of an electromagnetic or matter-wave field to address the question of whether a direct stochastic sampling and binning of the absolute square of the complex field amplitude can yield a distribution function $\tilde{P}_n$ that closely approximates the true particle number probability distribution $P_n$ of the underlying quantum state. By providing an operational definition of the binned distribution $\tilde{P}_n$ i...
We examine the interpretation of individual phase-space trajectories of the Wigner function as corresponding to possible outcomes of single experimental trials. To this end, we investigate the relation between the true (measured) particle number distribution $P_n$ for a single-mode state and that obtained by discretely binning the individual stochastic realisations of squared mode amplitudes $|\alpha|^2$ of the sampled Wigner distribution $W(\alpha)$, which we denote via $\tilde{P}_n$. We pro...
A fundamental property of a three-dimensional Bose-Einstein condensate (BEC) is long-range coherence, however, in systems of lower dimensionality, not only is the long range coherence destroyed, but additional states of matter are predicted to exist. One such state is a `transverse condensate', first predicted by van Druten and Ketterle [Phys. Rev. Lett. 79, 549 (1997)], in which the gas condenses in the transverse dimensions of a highly anisotropic trap while remaining thermal in the longitu...
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparatio...
4 pages, 3 figures, plus Supplementary material in PDF. Corrected spelling of the first author's name in v.2; International audience; The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlations can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using collidin...
A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be cancelled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coup...
No project research data found
No project statistics found
Scientific Results
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
PUBLICATIONS BY ACCESS MODE
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
Publications in Repositories
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.