LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

The fundamental structure of combinatorial configurations

Title
The fundamental structure of combinatorial configurations
Funding
ARC | Linkage International
Contract (GA) number
LX0453416
Start Date
2004/01/01
End Date
2007/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/LX0453416

 

  • Latin bitrades derived from groups

    Cavenagh, Nicholas J.; Drápal, Aleš; Hämäläinen, Carlo (2008)
    Projects: ARC | The fundamental structure of combinatorial configurations (LX0453416)
    A latin bitrade is a pair of partial latin squares which are disjoint, occupy the same set of non-empty cells, and whose corresponding rows and columns contain the same set of entries. Dr\'apal (\cite{Dr9}) showed that a latin bitrade is equivalent to three derangements whose product is the identity and whose cycles pairwise have at most one point in common. By letting a group act on itself by right translation, we show how some latin bitrades may be derived from groups without specifying an ...

    Multi-latin squares

    A multi-latin square of order $n$ and index $k$ is an $n\times n$ array of multisets, each of cardinality $k$, such that each symbol from a fixed set of size $n$ occurs $k$ times in each row and $k$ times in each column. A multi-latin square of index $k$ is also referred to as a $k$-latin square. A $1$-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in $k$-latin square...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box