LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Neural mechanisms underlying interlateral transfer of ballistic motor skill

Title
Neural mechanisms underlying interlateral transfer of ballistic motor skill
Funding
ARC | Discovery Projects
Contract (GA) number
DP1093193
Start Date
2010/01/01
End Date
2012/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP1093193

 

  • Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs

    Carroll, Timothy J; de, Rugy Aymar; Howard, Ian S; Ingram, James N; Wolpert, Daniel Mark (2015)
    Projects: ARC | Neural mechanisms underlying interlateral transfer of ballistic motor skill (DP1093193), WT
    Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented ei...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok