LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Mathematics of the quantum-classical mechanics interface

Title
Mathematics of the quantum-classical mechanics interface
Funding
ARC | Discovery Projects
Contract (GA) number
DP0450778
Start Date
2004/01/01
End Date
2006/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP0450778

 

  • Semiquantum versus semiclassical mechanics for simple nonlinear systems

    Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum ap...

    What is semiquantum mechanics?

    Semiclassical approximations to quantum dynamics are almost as old as quantum mechanics itself. In the approach pioneered by Wigner, the evolution of his quasiprobability density function on phase space is expressed as an asymptotic series in increasing powers of Planck's constant, with the classical Liouvillean evolution as leading term. Successive semiclassical approximations to quantum dynamics are defined by successive terms in the series. We consider a complementary approach, which explo...

    Free Dirac evolution as a quantum random walk

    Any positive-energy state of a free Dirac particle that is initially highly-localized, evolves in time by spreading at speeds close to the speed of light. This general phenomenon is explained by the fact that the Dirac evolution can be approximated arbitrarily closely by a quantum random walk, where the roles of coin and walker systems are naturally attributed to the spin and position degrees of freedom of the particle. Initially entangled and spatially localized spin-position states evolve w...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box