LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Discovery Projects - Grant ID: DP130100595

Title
Discovery Projects - Grant ID: DP130100595
Funding
ARC | Discovery Projects
Contract (GA) number
DP130100595
Start Date
2013/01/01
End Date
2015/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP130100595

 

  • A fractional order recovery SIR model from a stochastic process

    Angstmann, C. N.; Henry, B. I.; McGann, A. V. (2015)
    Projects: ARC | Discovery Projects - Grant ID: DP130100595 (DP130100595)
    Over the past several decades there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an an-hoc manner. These models may be mathematically interesting but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differential operators arise naturally in these models whenever the recovery time from the disease is power law d...

    A Fractional-Order Infectivity SIR Model

    Angstmann, Christopher N; Henry, Bruce I; McGann, Anna V (2015)
    Projects: ARC | Discovery Projects - Grant ID: DP130100595 (DP130100595)
    Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartmen...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box