You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to deal with high-dimensional continuous state spaces through complex heuristics, often relying on opti...
We study the robustness of active learning (AL) algorithms against prior misspecification: whether an algorithm achieves similar performance using a perturbed prior as compared to using the true prior. In both the average and worst cases of the maximum coverage setting, we prove that all $\alpha$-approximate algorithms are robust (i.e., near $\alpha$-approximate) if the utility is Lipschitz continuous in the prior. We further show that robustness may not be achieved if the utility is non-Lips...
We formulate and study a general family of (continuous-time) stochastic dynamics for accelerated first-order minimization of smooth convex functions. Building on an averaging formulation of accelerated mirror descent, we propose a stochastic variant in which the gradient is contaminated by noise, and study the resulting stochastic differential equation. We prove a bound on the rate of change of an energy function associated with the problem, then use it to derive estimates of convergence rate...
We present theoretical guarantees for an alternating minimization algorithm for the dictionary learning/sparse coding problem. The dictionary learning problem is to factorize vector samples $y^{1},y^{2},\ldots, y^{n}$ into an appropriate basis (dictionary) $A^*$ and sparse vectors $x^{1*},\ldots,x^{n*}$. Our algorithm is a simple alternating minimization procedure that switches between $\ell_1$ minimization and gradient descent in alternate steps. Dictionary learning and specifically alternat...
We analyze algorithms for approximating a function $f(x) = \Phi x$ mapping $\Re^d$ to $\Re^d$ using deep linear neural networks, i.e. that learn a function $h$ parameterized by matrices $\Theta_1,...,\Theta_L$ and defined by $h(x) = \Theta_L \Theta_{L-1} ... \Theta_1 x$. We focus on algorithms that learn through gradient descent on the population quadratic loss in the case that the distribution over the inputs is isotropic. We provide polynomial bounds on the number of iterations for gradient...
Deep reinforcement learning (deep RL) has been successful in learning sophisticated behaviors automatically; however, the learning process requires a huge number of trials. In contrast, animals can learn new tasks in just a few trials, benefiting from their prior knowledge about the world. This paper seeks to bridge this gap. Rather than designing a "fast" reinforcement learning algorithm, we propose to represent it as a recurrent neural network (RNN) and learn it from data. In our proposed m...
We present a generalization of the adversarial linear bandits framework, where the underlying losses are kernel functions (with an associated reproducing kernel Hilbert space) rather than linear functions. We study a version of the exponential weights algorithm and bound its regret in this setting. Under conditions on the eigendecay of the kernel we provide a sharp characterization of the regret for this algorithm. When we have polynomial eigendecay $\mu_j \le \mathcal{O}(j^{-\beta})$, we fin...
International audience; We study the problem of combinatorial pure exploration in the stochastic multi-armed bandit problem. We first construct a new measure of complexity that provably characterizes the learning performance of the algorithms we propose for the fixed confidence and the fixed budget setting. We show that this complexity is never higher than the one in existing work and illustrate a number of configurations in which it can be significantly smaller. While in general this improve...
We study online learning under logarithmic loss with regular parametric models. Hedayati and Bartlett (2012b) showed that a Bayesian prediction strategy with Jeffreys prior and sequential normalized maximum likelihood (SNML) coincide and are optimal if and only if the latter is exchangeable, and if and only if the optimal strategy can be calculated without knowing the time horizon in advance. They put forward the question what families have exchangeable SNML strategies. This paper fully answe...
No project research data found
No project statistics found
Scientific Results
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
PUBLICATIONS BY ACCESS MODE
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
Publications in Repositories
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.