LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Polymer Stabilized and Bio-functionalised Metal Nanoparticles As Potential Vectors For Drug Therapies

Title
Polymer Stabilized and Bio-functionalised Metal Nanoparticles As Potential Vectors For Drug Therapies
Funding
ARC | Discovery Projects
Contract (GA) number
DP1092640
Start Date
2010/01/01
End Date
2012/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP1092640

 

  • Copper(0)-mediated radical polymerisation in a self-generating biphasic system

    Boyer, Cyrille; Atme, Amir; Waldron, Christopher; Anastasaki, Athina; Wilson, Paul; Zetterlund, Per B.; Haddleton, David M.; Whittaker, Michael R. (2013)
    Projects: ARC | Polymer Stabilized and Bio-functionalised Metal Nanoparticles As Potential Vectors For Drug Therapies (DP1092640)
    Herein, we demonstrate the synthesis of well-defined poly(n-alkyl acrylate)s via copper(0)-mediated radical polymerisation in a self-generating biphasic system. During the polymerisation of n-butyl acrylate in DMSO, the polymer phase separates to yield a polymer-rich layer with very low copper content (ICP-MS analysis: 0.016 wt%). The poly(n-butyl acrylate) has been characterized by a range of techniques, including GPC, NMR and MALDI-TOF, to confirm both the controlled character of the polyme...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok