You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
For a prime $p$ and an integer $u$ with $\gcd(u,p)=1$, we define Fermat quotients by the conditions $$ q_p(u) \equiv \frac{u^{p-1} -1}{p} \pmod p, \qquad 0 \le q_p(u) \le p-1. $$ D. R. Heath-Brown has given a bound of exponential sums with $N$ consecutive Fermat quotients that is nontrivial for $N\ge p^{1/2+\epsilon}$ for any fixed $\epsilon>0$. We use a recent idea of M. Z. Garaev together with a form of the large sieve inequality due to S. Baier and L. Zhao, to show that on average over $p$...
Given an elliptic curve $E$ over a finite field $\F_q$ of $q$ elements, we say that an odd prime $\ell \nmid q$ is an Elkies prime for $E$ if $t_E^2 - 4q$ is a quadratic residue modulo $\ell$, where $t_E = q+1 - #E(\F_q)$ and $#E(\F_q)$ is the number of $\F_q$-rational points on $E$. These primes are used in the presently most efficient algorithm to compute $#E(\F_q)$. In particular, the bound $L_q(E)$ such that the product of all Elkies primes for $E$ up to $L_q(E)$ exceeds $4q^{1/2}$ is a c...
We estimate the deviation of the number of solutions of the congruence $$ m^2-n^2 \equiv c \pmod q, \qquad 1 \le m \le M, \ 1\le n \le N, $$ from its expected value on average over $c=1, ..., q$. This estimate is motivated by the recently established by D. R. Heath-Brown connection between the distibution of solution to this congruence and the pair correlation problem for the fractional parts of the quadratic function $\alpha k^2$, $k=1,2,...$ with a real $\alpha$.
International audience; We show that, for any fixed $\varepsilon > 0$ and almost all primes $p$, the $g$-ary expansion of any fraction $m/p$ with $\gcd(m,p) = 1$ contains almost all $g$-ary strings of length $k < (5/24 - \varepsilon) \log_g p$. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all $g$-ary strings of length $k < (41/504 -\varepsilon) \log_g p$ occur in the $g$-ary expansion of $m/p$.
We give an upper bound for the number elliptic Carmichael numbers $n \le x$ that have recently been introduced by J. H. Silverman. We also discuss several possible ways for further improvements.
In this paper, we show that for almost all primes p there is an integer solution x in [2,p-1] to the congruence x^x == x mod p. The solutions can be interpretated as fixed points of the map x -> x^x mod p, and we study numerically and discuss some unexpected properties of the dynamical system associated with this map.
We improve an estimate of A.Granville (1987) on the number of vanishing Fermat quotients $q_p(\ell)$ modulo a prime $p$ when $\ell$ runs through primes $\ell \le N$. We use this bound to obtain an unconditional improvement of the conditional (under the Generalised Riemann Hypothesis) estimate of Y. Ihara (2006) on a certain sum, related to vanishing Fermat quotients. In turn this sum appears in the study of the index of certain subfields of of cyclotomic fields $\Q(\exp(2 \pi i/p^2))$.
Given integers $a$ and $m\ge 2$, let $\Hm$ be the following set of integral points $$ \Hm= \{(x,y) \ : \ xy \equiv a \pmod m,\ 1\le x,y \le m-1\} $$ We improve several previously known upper bounds on $v_a(m)$, the number of vertices of the convex closure of $\Hm$, and show that uniformly over all $a$ with $\gcd(a,m)=1$ we have $v_a(m) \le m^{1/2 + o(1)}$ and furthermore, we have $v_a(m) \le m^{5/12 + o(1)}$ for $m$ which are almost squarefree.
We use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems of congruences modulo a prime $p$. In particular, we obtain nontrivial results about the number of solution in boxes with the side length below $p^{1/2}$, which seems to be the limit of more general methods based on the bounds of exponential sums along varieties.
We obtain a series of estimates on the number of small integers and small order Farey fractions which belong to a given coset of a subgroup of order $t$ of the group of units of the residue ring modulo a prime $p$, in the case when $t$ is small compared to $p$. We give two applications of these results: to the simultaneous distribution of two high degree monomials $x^{k_1}$ and $x^{k_2}$ modulo $p$ and to a question of J.Holden and P.Moree on fixed points of the discrete logarithm.
No project research data found
No project statistics found
Scientific Results
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
PUBLICATIONS BY ACCESS MODE
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.
Publications in Repositories
Chart is loading... It may take a bit of time. Please be patient and don't reload the page.