LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Discovery Projects - Grant ID: DP140100545

Title
Discovery Projects - Grant ID: DP140100545
Funding
ARC | Discovery Projects
Contract (GA) number
DP140100545
Start Date
2014/01/01
End Date
2016/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP140100545

 

  • MetaGraph2Vec: Complex Semantic Path Augmented Heterogeneous Network Embedding

    Zhang, Daokun; Yin, Jie; Zhu, Xingquan; Zhang, Chengqi (2018)
    Projects: ARC | Discovery Projects - Grant ID: DP140100545 (DP140100545)
    Network embedding in heterogeneous information networks (HINs) is a challenging task, due to complications of different node types and rich relationships between nodes. As a result, conventional network embedding techniques cannot work on such HINs. Recently, metapath-based approaches have been proposed to characterize relationships in HINs, but they are ineffective in capturing rich contexts and semantics between nodes for embedding learning, mainly because (1) metapath is a rather strict si...

    Time-Variant Graph Classification

    Graphs are commonly used to represent objects, such as images and text, for pattern classification. In a dynamic world, an object may continuously evolve over time, and so does the graph extracted from the underlying object. These changes in graph structure with respect to the temporal order present a new representation of the graph, in which an object corresponds to a set of time-variant graphs. In this paper, we formulate a novel time-variant graph classification task and propose a new grap...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box