LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1

Explaining forest responses to rising carbon-dioxide concentrations at stand scale using a new, simple model of plant carbon economy

Title
Explaining forest responses to rising carbon-dioxide concentrations at stand scale using a new, simple model of plant carbon economy
Funding
ARC | Discovery Projects
Contract (GA) number
DP0881765
Start Date
2008/01/01
End Date
2010/12/31
Open Access mandate
no
Organizations
-
More information
http://purl.org/au-research/grants/arc/DP0881765

 

  • Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging

    McMurtrie, Ross E; Iversen, Colleen M; Dewar, Roderick C; Medlyn, Belinda E; Näsholm, Torgny; Pepper, David A; Norby, Richard J (2012)
    Projects: ARC | Explaining forest responses to rising carbon-dioxide concentrations at stand scale using a new, simple model of plant carbon economy (DP0881765)
    CO2-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO2 (eCO2), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake and root distributions remains poorly represented in forest ecosystem and global land-surface models. Here, this link is modeled and analyzed using a new optimization hypothesis (MaxNup) for root foraging in relation to the spatial variability o...
  • No project research data found
  • Scientific Results

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    PUBLICATIONS BY ACCESS MODE

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

    Publications in Repositories

    Chart is loading... It may take a bit of time. Please be patient and don't reload the page.

Share - Bookmark

App Box