LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: ACM
Types: Article,Conference object
Subjects:
One of many skills required to engage properly in a conversation is to know the appropiate use of the rules of engagement. In order to engage properly in a conversation, a virtual human or robot should, for instance, be able to know when it is being addressed or when the speaker is about to hand over the turn. The paper presents a multimodal approach to end-of-speaker-turn prediction using sequential probabilistic models (Conditional Random Fields) to learn a model from observations of real-life multi-party meetings. Although the results are not as good as expected, we provide insight into which modalities are important when taking a multimodal approach to the problem based on literature and our own results.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from