LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Girdzijauskas, Sarunas; Chockler, Gregory; Vigfusson, Ymir; Tock, Yoav; Melamed, Roie (2010)
Publisher: ACM
Types: Article,Part of book or chapter of book
Subjects: Faculty of Science\Computer Science, PERFORMANCE OF SYSTEMS, Distributed Systems, Clustering, Data communications
An effective means for building Internet-scale distributed applications, and in particular those involving group-based information sharing, is to deploy peer-to-peer overlay networks. The key pre-requisite for supporting these types of applications on top of the overlays is efficient distribution of messages to multiple subscribers dispersed across numerous multicast groups. In this paper, we introduce Magnet: a peer-to-peer publish/subscribe system which achieves efficient message distribution by dynamically organizing peers with similar subscriptions into dissemination structures which preserve locality in the subscription space. Magnet is able to significantly reduce the message propagation costs by taking advantage of subscription correlations present in many large-scale group-based applications. We evaluate Magnet by comparing its performance against a strawman pub/sub system which does not cluster similar subscriptions by simulation. We find that Magnet outperforms the strawman by a substantial margin on clustered subscription workloads produced using both generative models and real application traces.
  • No references.
  • No related research data.
  • No similar publications.