LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barcelo, Pablo; Libkin, Leonid; Lin, Anthony W.; Wood, Peter T. (2012)
Publisher: ASSOC COMPUTING MACHINERY
Journal: ACM TRANSACTIONS ON DATABASE SYSTEMS
Languages: English
Types: Article
Subjects: Graph databases, conjunctive queries, regular path queries, regular relations, /dk/atira/pure/subjectarea/asjc/1700/1710, Information Systems
For many problems arising in the setting of graph querying (such as finding semantic associations in RDF graphs, exact and approximate pattern matching, sequence alignment, etc.), the power of standard languages such as the widely studied conjunctive regular path queries (CRPQs) is insufficient in at least two ways. First, they cannot output paths and second, more crucially, they cannot express relationships among paths.

We thus propose a class of extended CRPQs, called ECRPQs, which add regular relations on tuples of paths, and allow path variables in the heads of queries. We provide several examples of their usefulness in querying graph structured data, and study their properties. We analyze query evaluation and representation of tuples of paths in the output by means of automata. We present a detailed analysis of data and combined complexity of queries, and consider restrictions that lower the complexity of ECRPQs to that of relational conjunctive queries. We study the containment problem, and look at further extensions with first-order features, and with nonregular relations that add arithmetic constraints on the lengths of paths and numbers of occurrences of labels.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | FOX

Cite this article