LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon (2008)
Types: Article,Conference object
Subjects:
This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras' characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera's position and subject's pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects' identification in a multi-camera surveillance scenario.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | SCOVIS

Cite this article