Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Партилхаев, Вячеслав Викторович; Танхаева, Лариса Максимовна; Оленников, Даниил Николаевич (2013)
Publisher: Altai State University
Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
Languages: Russian
Types: Article
Subjects: Caragana, Fabaceae, phenolic compounds, flavonoids, Caragana; Fabaceae; фенольные соединения; флавоноиды
A study of phenolic compounds of the seven species of Caragana Fabr. genus growing on the territory of Siberia (C. arborescens, C. bungei, C. buryatica, C. frutex, C. jubata, C. pygmaea, C. spinosa) was realized. It is established that phenolic compounds are unevenly distributed in organs of studied species: the highest content of flavonoids in the leaves was observed for C. arborescens (107,78 mg/g) and in the flowers – for C. jubata (47,24 mg/g). The total contents of phenolic compounds in the leaves of the species were 35,00 (C. buryatica) – 112,78 mg/g (C. arborescens) and in the flowers – 36,24 (C. bungei) – 101,07 mg/g (C. jubata). To stem epidermal layers was observed a higher concentration of phenolic compounds than the same for inner bark of the stem. As a result of the chromatographic separation from C. spinosa was isolated and identified myricetin-3-O-rutinoside found in this species and Caragana genus for the first time. The investigation of the flavonoids accumulation in C. spinosa was showed that their maximum accumulation observed at the flowering period (in shoots up to 18,63 mg/g). The environmental growth conditions of C. spinosa affected on the quantitative content of phenolic compounds in the shoots, and the highest concentration was observed for meadow cenopopulations. It was established that the drying process of C. spinosa shoots does not change the composition of flavonoids, but reduced the total phenolic content in 17,3–33,9% and total flavonoids content in 12,6–27,0%.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Flora SSSR / red. V.L. Komarov. [Flora of the USSR. Ed. V.L. Komarov]. Moscow ; Leningrad, 1945, vol. XI, pp. 327-368. (in Russ.)
    • 2. Meng Q., Niu Y., Roubin R.H., Hanrahan J.R. J. Ethnopharmacol., 2009, vol. 124, pp. 350-368.
    • 3. Shetty K., Curtis O.F., Levin R.E., Witkowsky R., Ang W. J. Plant Physiol., 1995, vol. 147, pp. 447-451.
    • 4. Olennikov D.N., Tankhaeva L.M., Partilkhaev V.V. Chem. Nat. Compd., 2012, vol. 47, no. 6, pp. 988-990.
    • 5. Olennikov D.N., Partilkhaev V.V. J. Planar Chrom. Modern TLC., 2012, vol. 25, no. 1, pp. 30-35.
    • 6. Hou W., Lin R., Lee T., Huang Y., Hsu F., Lee M. J. Sci. Food Agric., 2005, vol. 85, pp. 615-621.
    • 7. Lu Y., Sun Y., Foo L.Y., McNaab W.C., Molan A.L. Phytochemistry, 2000, vol. 55, pp. 67-75.
    • 8. Ma Ch., Li B., Xu Q., Zhang G. Chin. J. Appl. Environ. Biol., 2006, vol. 12, pp. 487-495.
    • 9. Boinik V.V., Batyuk N.V., Kovalev V.N. Chem. Nat. Compd., 1986, vol. 22, p. 351.
    • 10. Butayarov A.V., Batirov E.Kh., Tadzhibaev M.M., Yuldashev M.P. Chem. Nat. Compd., 1999, vol. 35, pp. 628-630.
    • 11. Shi J., Chen B., Sun Z.H., Hu C.Q. Acta Pharm. Sin., 2003, vol. 38, pp. 599-602.
    • 12. Umarov A., Batyuk V.S., Khaletskii A.M. Chem. Nat. Compd., 1971, vol. 7, pp. 499-500.
    • 13. Yang Z., Xiao A., Zhang X., Li T., Li S. J. Chin. Med. Mater., 2008, vol. 31, pp. 855-857.
    • 14. Polovinko A.E., Yakovlev G.P. Chem. Nat. Compd., 1985, vol. 21, pp. 252-253.
    • 15. Tai Z.-G., Cai L., Dai L., Sun W.-J., Zhe W., Yang Y.-B., Cao Q.-E., Ding Z.-T. Molecules, 2010, vol. 15, pp. 6722-6732.
    • 16. Shpekina G.A. Chem. Nat. Compd., 1990, vol. 26, p. 95.
    • 17. Boinik V.V., Kovalev V.N. Chem. Nat. Compd., 1987, vol. 23, p. 504.
    • 18. Polovinko A.E., Shostakovskaya N.G. Chem. Nat. Compd., 1987, vol. 23, p. 375.
    • 19. Qiu E.C., Xiang X.Z., Pan J.C., Tu Z.B. J. Hebei Norm. Univ. (Nat. Sci. Ed.), 1997, vol. 21, pp. 99-101.
    • 20. Ma C.W., Ham I., Whang W.K. Yakhak Hoechi, 1999, vol. 43, pp. 143-149.
    • 21. Iakovlev G.P. Bobovye zemnogo shara. [Legumes of the world]. Leningrad, 1991, pp. 108-112. (in Russ.).
    • 22. Wang J., Gao H., Zhao J., Wang Q., Zhou L., Han J., Yu Z., Yang F. Molecules, 2010, vol. 15, pp. 5998-6007.
    • 23. Gaara A.H., Nassar M.I., Younis M., Elmegeed G.A., Mabry T.J., Pare P.W. Rev. Latinoamer. Quím., 2008, vol. 36, pp. 52-59.
    • 24. Patil A.P., Patil V.R. Int. J. Pharm. Res., 2011, vol. 3, pp. 20-23.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok