LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Altai State University
Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
Languages: English
Types: Article
Subjects: wood chemistry; kinetics; fir; Abies sibirica; oxidation; oxygen delignification; wood extractives; химия древесины; кинетика; пихта; окисление; кислородно-щелочная делигнификация; экстрактивные вещества
Kinetics of fir wood oxidation (Abies sibirica) in aqueous alkaline media were studied by measuring oxygen consumption rates. Oxidation of extracted wood conforms to the kinetics of non-branching chain mechanism. The same mechanism governs the initial stage of non-extracted wood oxidation, but a transition to degenerate branching mode soon occurs. This transition is probably caused by softwood's low hemicelluloses content and high content of propyl guaiacol lignin units that are prone to condensation involving phenolic hydroxyls. This leads to quick depletion of phenolic and uronic carboxylic groups; chain initiation by oxidizing the respective anions becomes impossible, and degenerate branching takes the lead. It is assumed that inert hydrophobic fir extractives physically shield hydroperoxides responsible for degenerate branching from alkali. This prevents alkali from causing heterolytic hydroperoxide cleavage that does result in chain branching. It is assumed that the catalyst accelerates the reaction of homolytic cleavage of the aforementioned hydroperoxides
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article