Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Макаренко, Сергей Петрович; Шмаков, Владимир Николаевич; Коненкина, Татьяна Александровна; Дударева, Любовь Виссарионовна; Константинов, Юрий Михайлович (2014)
Publisher: Altai State University
Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
Languages: Russian
Types: Article
Subjects: Chemistry, Q, Larix gmelinii, Larix sibirica, каллусы, fatty acid desaturase gene, Δ5-polimetilenrazdelennye acid, QD1-999, Science, Larix gmelinii, Larix sibirica, каллусы, жирные кислоты, десатуразы, ∆5-полиметилен¬разделенные кислоты

The fatty acid (FA) composition of callus lipids in two larix species (Larix gmelinii and Larix sibrica) was studied by gas-liquid chromatography. Callus lipids were characterized by a high content of unsaturated FAs: 57,7% in L. gmelinii and 59,9% L. sibirica. Among them, oleic and linoleic acids predominated (11,2 and 24,5% of total FAs in L. gmelinii and 14,8 and 26,6% in L. sibirica, respectively). Callus lipids also contained Δ5-UPIFA (unsaturated polymethylene-interrupted FAs (12,3% in L. gmelinii and 11,2% in L. sibirica, respectively), where pinoleic and sciadonic acids predominated. Callus lipids also contained high content of VLCPUFA (С20, C22, C23, C24) 11,4% in callus L. gmelinii and 9,1% L. sibirica.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Ohlorogg J., Browse J. Plant Cell., 1995, vol. 7, pp. 957-970.
    • 2. Wang Z., Benning C. Bio hem. Soc. Trans., 2012, vol. 40, pp. 457-463.
    • 3. Schultz D.J., Suh M.C., Ohlrogge J. Plant Physiol., 2000, vol. 124, pp. 681-692.
    • 4. Kang J., Snapp A.R., Lu C. Plant Physiology and Biochemistry, 2011, vol. 49, pp. 223-229.
    • 5. Theocharis A., Clement C., Barka E.A. Planta, 2012, vol. 235, pp. 1091-1105.
    • 6. Roman A., Andreu V., Hernandez M.L., Lagunas B., Picorel R., Martinez-Rivas J.M., Alfonso M. J. Exp. Bot., 2012, vol. 63, pp. 4973-4982.
    • 7. Sayanova O., Ruiz-Lopez N., Haslam R. P., Napier J.A. Plant Biotechnology J., 2012, vol. 10, pp. 195-206.
    • 8. Astahova N.V., D myn Y.N., Narajkyna N.V., Trunova T.Y. Fyzyologyja rastenyj, 2011, vol. 58, pp. 21-27. (in Russ.).
    • 9. Cao S., Zhou X.R., Wood C.C., Green A.G., Singh S.P., Liu L, Liu Q. BMC Plant Biol., 2013, vol. 13, pp. 1-18.
    • 10. Napier J.A., Michaelson L.V., Dunn T.M. Trend Plant Sci., 2002, vol. 7, pp. 475-478.
    • 11. Wolff R.L., Lavialle O., Pedrono F., Pasquier E., Destaillats F., Marpeau A., Angers P., Aitzetmuller K. Lipids, 2002, vol. 37, pp. 17-26.
    • 12. Meesapyodsuk D, Qiu X. Lipids, 2012, vol. 47(3), pp. 227-237.
    • 13. Williams M., Sanchez J., Hann A.C., Harwood J.L. J. Exp. Bot., 1993, vol. 44, pp. 1717-1723.
    • 14. Salas J., Canchez J., Ramli U.S., Manal A.M., Williams M., Harwood J.L. Prog. Lipid Res., 2000, vol. 39, pp. 151-180.
    • 15. Hernandez M.L., Guschina I.A., Martinez-Rivas J.V., Mancha M., Harwood J.L. J. Exp. Bot., 2008, vol. 59, pp. 2425-2435.
    • 16. Ramli U.S., Salas J.J., Quant P.A., Harwood J.L. New Phytologist., 2009, vol. 184, pp. 330-339.
    • 17. Tymofeeva O.A., Rumjanceva N.Y. Kul'tura kletok y tkanej rastenyj. [Culture cells and plant tissues]. Kazan, 2012, pp. 1-91. (in Russ.).
    • 18. Tret'jakova N.Y., Yzhboldyna M.V. Lesovedenye, 2009, no. 5, pp. 43-49. (in Russ.).
    • 19. Saljaev R.K., Rekoslavskaja N.Y. Lesovedenye, 2009, no. 5, pp. 57-62. (in Russ.).
    • 20. Makarenko S.P., Konstantinov Iu.M., Shmakov V.N., Khotimchenko S.V. Konenkina T.A. Biologicheski membrany, 2005, vol. 52, pp. 343-348. (in Russ.).
    • 21. Makarenko C.P., Konstantinov Iu.M., Shmakov V.N, Konenkina T.A. Fiziologiia rastenii, 2010, vol. 57, pp. 790-794. (in Russ.).
    • 22. Murashige T., Scoog F. Plant Physiol., 1962, vol. 15, pp. 473-497.
    • 23. Bligh E.C., Dyer W.J. Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911-917.
    • 24. Christie W.W. Advances in Lipid Methodology, Dundee, 1993, pp. 69-111.
    • 25. Dobson G., hristie W.W. Eur. J. Lipid Sci. Technol., 2002, vol. 104, pp. 36-43.
    • 26. Wolff R.L., Christie W.W. Eur. J. Lipid Sci. Technol., 2002, vol. 104, pp. 234-244.
    • 27. Cartea M.E., Migdal M., Galle A.M., Pelletier G., Guerche P. Plant Sci., 1998, vol. 136, pp. 181-194.
    • 28. Mongrad S., Badoc A., Patouille B., Lacomblez C., Chavent M., Cassagne C., Bessoule J.J. Phytochemistry, 2001, vol. 58, pp. 101-115.
    • 29. Plattner R.D., Spencer G.F., Kleiman R. Lipids, 1975, vol. 10, pp. 413-416.
    • 30. Sato M., Seki K., Kita K., Moriguchi Y., Yunoki K., Kofujita H., Ohnishi M. Biosci Biotechnol Biochem., 2008, vol. 72, pp. 2895-2902.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article