LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Altai State University
Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
Languages: Russian
Types: Article
Subjects: Saсcharina; бурые водоросли; жирные кислоты; глицерогликолипиды; фосфолипиды; триацилглицерины; фотосинтетические пигменты; свободные стерины; ГЖХ, Saсcharina, brown alga, fatty acids, glyceroglycolipids, phospholipids, triacylglycerols, photosynthetic pigments, free sterols, GC
The distribution of lipids and photosynthetic pigments (PSP) in the different zones of blade as apical, middle and intercalary meristem, as well as in the stipe with rhizoids two species Saccharina of Japan sea: Saccharina cichorioides (Miyabe)andS. angustata (Kjellman) with tallus blade –like and two digitate species: S. dentigera(Kjellman)и S. bongardiana (Postels et Ruprecht) from Okhotsk sea were investigated. Variation in lipid content  and PSP in zones of blade of S. cichorioides  with starting of growth and it termination were investigated additionally. Significant differences in the distribution of total lipids (TL), their individual classes, fatty acids (FA) and PSP in different zones of the thallus were founded, which had the species peculiarities and determined by the conditions habitat and the stage of development of algae rather than the morphology of the thallus.In algae S. cichorioides grow up completed, in contrast to algae started of growth, there was an increase in lipid content in all parts of the blade, but in the stipe with rhizoids lipid content was reduced. Along with this, there was a redistribution contents all classes of lipids and PSP, saturated (SFA) and unsaturated (USFA) FA in zones of the blade: the content of first decreases sharply in the apical part and in the middle of the blade, but USFA - increased. Such restructuring is likely to have been associated with the beginning of stage of sporogenesis.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Flores-Moya A., Fernandez J.A., Niell F.X. J. Phycol., 1995, vol. 31, no. 6, pp. 867 874.
    • 2. Gomez I., Wiencke C. Polar. Biol., 1998, vol. 19, no. 2, pp. 115 124.
    • 3. Gevaert F., Davoult D., Creach A., Kling R., Janquin M.-A., Seuront L., Lemone Y. J. Mar. Biol. Assoc., U.K. 2001, vol. 81, no. 5, pp. 727 734.
    • 4. Delebecq G., Davoult D., Menu D., Janquin M.-A.,Dauvin J.-C., Gevaert F. Mar. Biol., 2013, vol. 160, no. 3, pp. 503 517.
    • 5. Wang Y., Xu D., Fan X., Zhang X., Ye N., Wang W., Mao Y., Mou S., Cao S. J. Appl. Phycol., 2013, vol. 25, no. 2, pp. 631 637.
    • 6. Gomez I., Wiencke C., Thomas D.N. Eur. J. Phycol., 1996, vol. 31, no. 2, pp. 167 172.
    • 7. Khotimchenko S.V., Kulikova I.V. Bot. Mar., 2000, vol. 43, no. 1, pp. 87 91.
    • 8. Kulikova I.V., Khotimchenko S.V. Russ. J. Mar. Biol., 2000, vol. 26, no. 1, pp. 55-57.
    • 9. Miralles J., Aknin M., Bandia J., Bassene E., Diagne O., Kornprobst J.-M. Oceanologica Acta, 1989, vol. 12, no. 4, pp. 433 436.
    • 10. Khan M.N.A., Cho J.-Y., Lee M.-C., Kang J.-Y., Park N.G., Fujii H., Hong Y.-K. J. Agric. Food Chem., 2007, vol. 55, no. 17, pp. 6984 6988.
    • 11. Bligh E.G., Dyer W.J. Can. J. Biochem. Physiol., 1959, vol. 37, no. 8, pp. 911-918.
    • 12. Gerasimenko N.I., Skriptsova A.V., Busarova N.G., Moiseenko O.P. Fiziologiia rastenii, 2011, vol. 58, no. 5, pp. 743-749. (in Russ.).
    • 13. Christie W.W. J. Chromatogr., 1988, vol. 447, pp. 305-314.
    • 14. Jensen A., Indergaard M., Holt T.J. Bot. Mar., 1985, vol. 28, no. 9, pp. 375 381.
    • 15. Drew E.A. P.S.Z.N.I.: Mar. Ecol., 1983, vol. 4, no. 3, pp. 227-250.
    • 16. Benson A.A. Annu. Rev. Plant Physiol., 1964, vol. 15, pp. 1 16.
    • 17. Leech R.M., Rumsby M.G., Thomson W.W. Plant Physiol., 1973, vol. 52, no. 3, pp. 240-245.
    • 18. Vishwanath B.S., Eichenberger W., Frey F.J., Frey B.M. Biochem. J., 1996, vol. 320, no. 1, pp. 93 99.
    • 19. Machalek K.M., Davison I.R., Falkowski P.G. Plant Cell Environ., 1996, vol. 19, no. 9, pp. 1005 1016.
    • 20. Gevaert F., Creach A., Davoult D., Holl A.-C., Seuront L., Lemone Y. Plant Cell Environ., 2002, vol. 25, no. 7, pp. 859 872.
    • 21. Zheng G., Tian B., Fujuan Z., Tao F., Li W. Plant Cell Environ., 2011, vol. 34, no. 9, pp. 1431-1442.
    • 22. Solovchenko A.E. Fiziologiia rastenii, 2012, vol. 59, no. 2, pp. 192-202. (in Russ.).
    • 23. Mock T., Kroon B.M.A. Phytochemistry, 2002, vol. 61, no. 1, pp. 41-51.
    • 24. Cohen Z., Vonshak A., Richmond A. J. Phycol., 1988, vol. 24, no. 3, pp. 328-332.
    • 25. Banskota A.H., Stefanova R., Gallant P., McGinn P.J. J. Appl. Phycol., 2013, vol. 25, no. 2, pp. 349-357.
    • 26. Le Goff C., Kaux J-F., Leroy L., Pincemail J., Chapelle J-P., Cavalier E. Food Nutr. Sci., 2013, vol. 4, pp. 188-194.
    • Received January 13, 2015 Revised March 23, 2015
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article