Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
V. P. Vistovskaya; M. A. Zaugolnikova (2016)
Publisher: Altay State University
Journal: Acta Biologica Sibirica
Languages: Russian
Types: Article
Subjects: левомицетин, молоко, Biology; Biotechnology; Animal physiology, иммуноферментный анализ., яйцо, тетрациклины, Биология; Биотехнология; Физиология животных, стрептомицин; тетрациклины; сульфаниламиды; левомицетин; мясо; молоко; яйцо; иммуноферментный анализ., мясо, Agriculture, S, streptomycin; tetracyclines; sulfonamides; chloramphenicol; meat; milk; egg; linked immunosorbent assay., сульфаниламиды, стрептомицин
Применение антибиотиков в животноводстве приводит к ряду негативных моментов, как для самих животных, так и для человека, использующего в пищу продукты от этих животных. Сроки необходимые для элиминации антибиотиков из организма при использовании мяса, молока и яиц после антибиотикотерапии животных, не всегда выдерживаются. В связи с этим остаточные количества антибиотических веществ в животноводческой продукции строго нормируются. В статье приводятся данные, показывающие, что из выявляемых антибиотиков (стрептомицин, тетрациклины, сульфаниламиды, левомицетин) предельно-допустимую концентрацию превышают антибиотики группы тетрациклинов.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdullayev, L.V. (2013). Control of safety indicators of milk and milk products. Dairy Industry, 9, 53-54. (in Russian).
    • Alimardanov, A.Ş. (2007). Antibiotic resistance and antibiotic susceptibility of E. coli strains circulating in poultry. Herald of Altai State Agrarian University, 7(33), 41-44. (in Russian).
    • Azibekyan, A.S., Kurysko, V.A., Zaichko, G.N. (2013). Antibiotics in our food. Advances in chemistry and chemical technology, 5(145), 123-126. (in Russian).
    • Belkina, M.M. (2014). Nonprescription receiving antibiotics: antibiotics especially students of 4-6 courses of gomel state medical university. Scientific aspirations, 4(12), 10-14. (in Russian).
    • Belyustova, K.O., Sokolova, L.I. (2011). Determination of levommtsetina in food with different fat content. Engineering and technology of food production, 3(22), 107-111. (in Russian).
    • Bilandzic, N., Varenina, I., Solomun Kolanovic, B. (2011). Control of chloramphenicol in samples of meat, meat products and fish. MESO: The first Croatian meat journal, 13(3), 192-196.
    • Burkin, M.A., Galvidis, I.A. (2010). Monitoring studies of antibiotic contamination of milk by ELISA. Molecular Medicine, 4, 47-51. (in Russian).
    • Burkin, M.A., Kononenko, G.P., Burkin, A.A. (2012). Methods of sanitary control of animal products. ELISA analysis of chloramphenicol. Agricultural Biology, 4, 113-119. (in Russian).
    • Butko, M.P., Poskonnaya, T.F. (2015). Determination of chloramphenicol in animal products linked immunosorbent assay. Russian Journal 'Problems of Veterinary Sanitation, Hygiene and Ecology', 2(14), 9-15. (in Russian).
    • Cherrnyshev, V.V., Chernyshev, I.V. (2014). Dangerous contaminants in the raw material for the production of raw sausages. Science and education: current trends, 5(5), 252-264. (in Russian).
    • Dibner, J.J., Richards, J.D. (2005). Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 84, 634-643.
    • Donkova, N.V. (2012). Contamination of poultry products with antibiotics under ekspirementa. Herald of Omsk State Agrarian University, 4(8), 74-78. (in Russian).
    • Donkova, N.V. (2005). valuation of the residual amount of the tetracycline group of antibiotics in meat, offal and eggs of birds in experimental drug intoxication. Siberian bulletin agricultural science, 2, 58-63. (in Russian).
    • Geraymovich, O.A., Malinin, Z.Y. (2009). Ordering of standardized methods for determining the inhibitory substances and antibiotics in milk and milk products. Dairy Industry, 9, 44-45. (in Russian).
    • Ginsburg, A. (2012). Modern methods for determining antibiotics in milk. Dairy Industry, 2, 50-51. (in Russian).
    • Glaskovich, M.A., Shulga, L.V. (2010). How to do without the feeding of antibiotics? First International Becker read: collection of scientific papers based on scientific and practical conference, Volgograd, 27- 29 May 2010. Volgograd: Volgograd State University. (in Russian).
    • GOST 3622-68. Milk and dairy products. Sampling and preparation for test (with Amendment N 1). Moscow: STANDARTINFORM. (in Russian).
    • GOST 7269-79. Meat. sampling methods and methods for determination of organoleptic freshness (with change in N 1, 2). Moscow: STANDARTINFORM. (in Russian).
    • Gruhzit, O.M., Fisken, R.A., Reuther, T.F., Edith Martino (1949). Chloramphenicol (Chloromycetin), an antibiotic. Pharmacological and Pathological Studies in Animals. J. Clin Invest., 28(5), 943-952.
    • Ignatenko, A.V. (2012). Methods for determination of residues of antibiotics and inhibiting substances in milk. Proceedings of the Belarusian State Technological University. Series 4: Chemistry, technology of organic substances and biotechnology. (in Russian).
    • Kalinin, M.N., Gribanov, E.N., Oskotskaya, E.R. (2012). Screening of some animal in the content of residues of chloramphenicol products. Transactions of Orel State University, 6(50), 93-95. (in Russian).
    • Kalnitskaya, O.I. (2008). Veterinary and sanitary control of residues of antibiotics in the feed and animal products. Thesis of Doctoral Disseration. Moscow. (in Russian).
    • Kania, I.P. (2014). Antibiotics in milk. Current research: theory, methodology, practice, 1(4), 290-297. (in Russian).
    • Kapitonova, E.A., Glaskovich, M.A., Kuzmenko, P.M., Glaskovich, S.A., Sobolev, B.N. (2011). Current status and problems of the use of antibiotics in agriculture. Scientific notes of Vitebsk State Academy of Veterinary Medicine, 47(1-2), 284-288. (in Russian).
    • Karychev, R. (2011). Modern methods for determining antibiotics in milk. Processing of milk, 3(137), 16-17. (in Russian).
    • Kletikova, L.V. Bessarabia, B.F., Kozlov, A.B. (2013). Environmental and hygienic aspects of the use of antibiotics. Scientific Search, 2, 36-39. (in Russian).
    • Komarov, A.A., Krapivkin, B.A., Nasyrova, O.A., Zakirov, Yu.A. (2007). Determination of tetracyclines in livestock production HPLC. Veterinary Practice, 3(38), 46-50. (in Russian).
    • Kuchinskya, B. Zaitsev, V.V. (2015). The susceptibility of cows to mastitis and concentration of biologically active substances in milk, depending on the breed. News of the Samara State Agricultural Academy, 1, 60-64. (in Russian).
    • Li, Wang, Yan, Zhang, Xiang, Gao, Zhenjuan, Duan, Shuo, Wang (2010). Determination of Residues in Milk by Enzyme-Linked Immunosorbent Assay: Improvement by Biotin-Streptavidin-Amplified System. Journal of agricultural and food chemistry, 58(6), 3265-3270.
    • MUK 4.1.1912-04. Determination of residues of chloramphenicol (chloramphenicol hlormitsetina) in products of animal origin by high performance liquid chromatography, and enzyme immunoassay. Moscow: Publishing House of Standards. (in Russian).
    • MUK 4.1.2158-07. Determination of residues of tetracyclines and sulfonamides in foods of animal origin by enzyme immunoassay. Moscow: Publishing House of Standards. (in Russian).
    • MUK 5.1.1410-05. Quantification of antimicrobial drugs in food raw materials and products of animal origin by enzyme immunoassay. Moscow: Publishing House of Standards. (in Russian).
    • Selman, A. (1952). Waksman Streptomycin: background, isolation, properties, and utilization. Nobel lecture, Desember 12.
    • Ulanova, T.S., Karnazhitskaya, T.D., Pshenichnikova, E.O., Nahieva, E.A. (2013). Development of a technique of definition of chloramphenicol in meat products. The analysis of health risk, 4, 82-90. (in Russian).
    • Voronezhtseva, O.V. Eremin, S.A., Ermolaeva, T.N. (2009). Determination of aminoglycoside antibiotics in food by the method of fluorescence polarization immunoassay. Bulletin of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2, 11-17. (in Russian).
    • Zaugolnikova, M.A., Vistovskaya, V.P. (2015). Detection of antibiotics in milk by ELISA. Collection of scientific papers of the international conference. Altai State University. (in Russian).
    • Zhebentyaev, A.I., Katkova, E.N. (2013). ELISA analysis. Journal of Pharmacy, 2(60), 90-97. (in Russian).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok