Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Евстафьев (Evstafev), Сергей (Sergej) Николаевич (Nikolaevich); Чечикова (Chechikova), Елена (Elena) Викторовна (Viktorovna) (2015)
Publisher: Altai State University
Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
Languages: Russian
Types: Article
Subjects: wheat straw, subcritical autohydrolysis, cellulose, pentosans, sugars, солома пшеницы; субкритический автогидролиз; целлюлоза; гемицеллюлозы; сахара; ферментолиз
Behavior of wheat straw polysaccharides in dynamic conditions of subcritical autohydrolysis was examined with a pressure of 30MPa in the temperature range of 150–290 °C. The dependence of the yield of gaseous, liquid and solid products from the process temperature is studied. The formation of liquid products is mainly performed due to the hydrolysis of pentosans and partially of cellulose in the range of 150–200 °С. The main components of the liquid products are oligosaccharide and monosaccharide. The monosaccharide is more than 65% of xylose and arabinose. The temperature rise in the range of 200–290 °С is accompanied by a decrease in medium pH, the hydrolysis of cellulose and intensive gasification. The monosaccharide of liquid products isolated at 270 °С is mainly composed of glucose and no more than 25% of pentose of the amount of monosaccharide. With the temperature rise of the process the maximal yield of sugars is at 200 °C and then it decreased from 29,6 to 5,3% for bone-dry solid matter of the straw at 270 °C. The decrease of the reactivity of cellulose straw treated at 200 °С to enzymatic hydrolysis is established.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Kim J.S., Lee Y.Y., Torget R.W. Biochem. Biotechnol., 2001, vol. 91-93(1-9), pp. 331-340.
    • 2. Ortega N., Busto M.D., Perez-Mateos M. Int. Biodeterior Biodegrad, 2001, vol. 47(1), pp. 7-14.
    • 3. Wiboonsirikul J., Kimura Y., Kadota M., Morita H., Tsuno T., Adachi S. Food Chem., 2007, vol. 55 (21), pp. 8759-8765.
    • 4. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J. Bioresource Technology, 2010, vol. 101 (13), pp. 4851-4861
    • 5. Talebnia F., Karakashev D., Angelidaki I. Bioresource Technology, 2010, vol. 101 (13), pp. 4744-4753
    • 6. Pourali ., Asghari F.S., Yoshida H. Food Chemistry, 2009, vol. 115 (1), pp. 1-7
    • 7. Luque de Castro M.D., Jimenez-Carmona M.M., Fernandez-Perez V. Trends Anal. Chem., 1999, vol. 18 (11), pp. 708-716.
    • 8. Bicker M., Endres S., Ott L.,Vogel H. Journal of Molecular Catalysis A: Chemical, 2005, vol. 239, pp. 151-157.
    • 9. Kruse A., Gawlik A. Industrial and Engineering Chemistry Research, 2003, vol. 42 (2), pp. 267-279.
    • 10. Asghari F.S., Yoshida H. Industrial and Engineering Chemistry Research, 2007, vol. 46 (23), pp. 7703-7710.
    • 11. Pourali O., Asghari F.S., Yoshida H. Chemical Engineering Journal, 2010, vol. 160, pp. 259-266.
    • 12. Ingram T., Rogalinski T., Antranikian G., Bockemühl V., Brunner G. The Journal of Supercritical Fluids, 2009, vol. 48 (3), pp. 238-246.
    • 13. Pérez J.A., Ballesteros I., Ballesteros M., Sáez F., Negro M.J., Manzanares P. Fuel, 2008, vol. 87 (17-18), pp. 3640-3647.
    • 14. Evstaf'ev S.N., Fomina E.S., Privalova E.A. Khimiia rastitel'nogo syr'ia, 2011, no. 4, pp. 15-18. (in Russ.).
    • 15. Obolenskaia A.V., El'nitskaia Z.P., Leonovich A.A. Laboratornye raboty po khimii drevesiny i tselliulozy. [Laboratory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).
    • 16. Ivanova N.V., Ovodova R.G., Babkin V.A. Khimiia rastitel'nogo syr'ia, 2006, no. 1, pp. 15-20. (in Russ.).
    • 17. Ovodov Iu.S. Gazozhidkostnaia khromatografiia uglevodov. Obzor. [Gas-liquid chromatography of carbohydrates. Overview]. Vladivostok. 1970, 70 p. (in Russ.).
    • 18. DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Analyt. Chem., 1956, vol. 28 (3), pp. 350-356.
    • 19. Startsev O.V., Salin B.N., Skurydin Iu.G. Khimicheskaia tekhnologiia, 2000, vol. 370, no. 5, pp. 638-641. (in Russ.).
    • 20. Hata S., Wiboonsirikul J., Maeda A., Kimura Y., Adachi S. Biochem. Eng. J., 2008, vol. 40, pp. 44-53.
    • 21. Kaleine D.A., Veveris A.G., Polmanis A.G., Erin'sh P.P. et all. Khimiia drevesiny, 1990, no. 3, pp. 101-107. (in Russ.).
    • Received September 8, 2014
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok