Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Надежда Михайловна Микова; Иван Петрович Иванов; Николай Васильевич Чесноков; Валерий Федорович Каргин (2014)
Publisher: Altay State University
Journal: Himiâ Rastitelʹnogo Syrʹâ
Languages: Russian
Types: Article
Subjects: Chemistry, микрокристаллическая целлюлоза, карбонизация, окислительная модификация, поверхностные группы, адсорбционные и каталитические свойства, Q, QD1-999, Science, microcrystal cellulose, carbonization, oxidative modification, surface groups, adsorption and catalytic properties
The surface modification of carbonized at 450 °C microcrystal cellulose (MCC-450) by the oxidative agents solutions of different strength: 30% H2O2, 3N H2SO4, oleum and chlorosulfonic acid HSO3Cl results in preparation of carbon materials (CM) with different degrees of surface oxidation. The obtained CM were characterized using FTIR, BET, elemental and X-ray spectral analyses. The obtained results showed that more carboxylic and hydroxyl surface oxygen groups were introduced into CM composition as a result of oleum and HSO3Cl oxidation process than by the oxidative solutions of Н2О2 и 3N H2SO4. Significant quality of surface oxygen in the MCC/oleum and MCC/HSO3Cl samples is part of НSO3- groups, where the S content was 2,3–2,5% at. It has been found that oxidized sample MCC/oleum reveals activity in test reactions of cellulose catalytic hydrolysis and esterification of acetic acid with ethanol.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Langley L., Villanueva D., Fairbrother D. Chem. Mat., 2006, Vol. 18, no. 1, pp. 169-178.
    • 2. Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marin F. Carbon, 2000, vol. 38, no. 14, pp. 1995-2001.
    • 3. Vinke P., Eijk van der M., Verbree M., Voskamp A.F., Bekkum van H. Carbon, 1994, vol. 32, no. 4, pp. 675-686.
    • 4. Corapcioglu M.O., Huang C.P. Carbon, 1987, vol. 25, N4, pp. 569-578.
    • 5. Okamura M., Takagaki A., Toda M., Kondo J.N., Domen K., Tatsumi T., Hara M. Chem. Mater., 2006, vol. 18, no. 13, pp. 3039-3045.
    • 6. Stijn Van de Vyver, Li Peng, Jan Geboers at al. Green Chem., 2010, vol. 12, pp. 1560-1563.
    • 7. Onda A., Ochi T., Yanagisawa K. Green Chem., 2008, vol. 10, N10, pp. 1033-1037.
    • 8. Chen J.P., Wu S., Chongs K. Carbon, 2003, vol. 41, pp. 1979-1986.
    • 9. Mugisidi D., Ranaldo A., Soedarsono J.W., Hikam M. Carbon, 2007, vol. 45, pp. 1081-1084.
    • 10. Santiago M., Stuber F., Fabregat A., Font J. Carbon, 2005, vol. 43, no. 10, pp. 2334-2345.
    • 11. Chen J.P., Wu S.N. Langmuir, 2004, vol. 20, no. 6, pp. 2233-2242.
    • 12. Park S.J., Kim K.D. Carbon, 2001, vol. 39, no. 11, pp. 1741-1746.
    • 13. Beck N.V., Meech S.E., Norman P.R., Pears L.A. Carbon, 2002, vol. 40, pp. 531-540.
    • 14. Mikova N.M., Chesnokov N.V., Ivanov I.P., Mikhlin Iu.L., Kuznetsov B.N. Tekhnicheskaia khimiia ot teorii k praktike: sb. trud. III mezhdun. konf. [Technical chemistry from theory to practice: Proceedings of the III International Conference]. Perm, 2012, pp. 245-249. (in Russ.).
    • 15. Abdel-Nasser A,. El-Hendawy. J. Anal. Appl. Pyrolysis, 2006, vol. 75, pp. 159-166.
    • 16. Berenguer R., Marco-Lozar J.P., Quijada C., Cazorla-Amoros D., Morallon E. Carbon, 2012, vol. 50, pp. 1123-1134.
    • 17. Langley L.A., Fairbrother D.H. Carbon, 2007, vol. 45, pp. 47-54.
    • 18. Pradhan K.B., Sandle K.N. Carbon, 1999, vol. 37, pp. 1323-1332.
    • 19. Adams L.B., Hall C.R., Holmes R.J., Newton R.A. Carbon, 1998, vol. 26, no. 4, pp. 451-459.
    • 20. Mazov I., Kuznetsov V.L., Simonova I.A., Stadnichenko A.I., Ishchenko A.V., A.V., Romanenko A.I., Tkachev E.N., Anikeeva O.B. Applied Surface Science, 2012, vol. 258, pp. 6272-6280.
    • 21. Chingombe P., Saha B., Wakeman R.J. Carbon, 2005, vol. 43, pp. 3132-3143.
    • 22. Groszek A. Carbon, 1987, vol. 25, no. 6, pp. 717-722.
    • 23. Strelko Jr.V., Malik D.J., Streat M. Carbon, 2002, vol. 40, pp. 95-104.
    • 24. Greg S., Sing L. Adsorbtsiia, udel'naia poverkhnost', poristost'. [Adsorption specific surface area, porosity]. oscow, 1984, 306 p. (in Russ.).
    • 25. Pastor-Villegas J., Meneses Rodriguez J.M., Pastor-Valle J.F., Garcia Garcia M. J. Anal. Appl. Pyrolysis, 2007, vol. 80, pp. 507-514.
    • 26. Rodriguez-Mirasol J., Bedia J., Cordero T. Separation Science and Technology, 2005, vol. 40, pp. 3113-3135.
    • 27. Hara M., Yoshida T., Takagaki A., Takata T., Kondo J.N., Hayashi Sh., Domen K. Angew. Chem. Int. Ed., 2004, vol. 43, pp. 2955-2958.
    • 28. Suganuma S., Nakajima K., Kitano M., Amaguchi D.Y., Kato H., Hayashi Sh., Hara M. Am. Chem. Soc., 2008, vol. 130, no. 38, pp. 12787-12793.
    • Received July 1, 2013
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article