LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: French
Types: Article
Subjects: Instabilité de Richtmyer-Meshkov, Tube à chocs, Onde de choc, Turbulence, Strioscopie résolue en temps, Vélocimétrie Laser Doppler, 532, Richtmyer-Meshkov instability, Shock tube, Shock wave, Timeresolved, Schlieren visualization, Laser Doppler Velocimetry
Ce travail s’intéresse à l’analyse expérimentale du développement de la zone de mélange turbulente (ZMT) produite par une instabilité de Richtmyer-Meshkov (IRM). Les expériences sont réalisées au sein d’un tube à chocs vertical, et l’analyse s’appuie sur des mesures simultanées mettant en oeuvre des techniques expérimentales de type capteurs de pression pariétaux, visualisations strioscopiques résolues en temps et mesures de vitesse par Vélocimétrie Laser Doppler (LDV). Une caractérisation de l’installation expérimentale est tout d’abord effectuée en situation homogène (air pur, sans mélange), afin de déterminer la qualité de l’écoulement de base et connaître le niveau de turbulence de fond du tube à chocs. Les configurations de mélange, principalement entre de l’air et de l’hexafluorure de soufre (SF6), sont ensuite abordées. On s’intéresse dans un premier temps aux caractéristiques globales de la zone de mélange : en particulier à l’évolution de son épaisseur et à son taux de croissance. Plusieurs configurations de mélange sont étudiées en faisant varier différents paramètres expérimentaux tels que la hauteur de la veine d’essais du tube à chocs, la forme de la perturbation initiale de l’interface entre les deux gaz et le nombre d’Atwood, dans le but de déterminer leur influence sur le développement de la ZMT. On montre ainsi une sensibilité du taux de croissance post-rechoc à plusieurs de ces paramètres. Des comparaisons avec des simulations numériques réalisées par nos partenaires du Commissariat à l’Energie Atomique (CEA) montrent des tendances similaires entre expériences et simulations sur ce point. L’étude est ensuite complétée par une caractérisation plus locale de la ZMT, en mesurant les niveaux de turbulence en différents points de la veine d’essais à l’aide de la LDV. Après avoir quantifié les contraintes de convergence statistique imposées par l’expérience pour ce type de mesures, on donne une estimation des intensités turbulentes produites par l’écoulement de mélange à différents stades de son développement. This experimental study sheds some light on the development of the turbulent mixing zone (TMZ) arising from a Richtmyer-Meshkov instability (RMI). The experiments are conducted in a vertical shock tube, and the analysis relies on simultaneous measurements involving pressure transducers, time-resolved Schlieren visualizations and Laser Doppler Velocimetry (LDV). In a first step, a thorough characterization of the experimental apparatus is conducted in order to qualify the basic flow configuration corresponding to homogeneous situations (pure air without mixing), and to evaluate the « background » turbulence level of the shock tube. Mixing configurations (mainly between air and sulfur hexafluoride, SF6) are then investigated. We first focus on a global description of the mixing zone such as the time evolution of its thickness and the corresponding growth rate. We consider several mixing configurations, varying the length of the test section, the shape of the initial interface between the two gases and the Atwood number. A clear influence of some of these parameters is shown on the the post-reshock increasing rate of the mixing zone, in good accordance with numerical results obtained from the Commissariat à l’Energie Atomique (CEA, french atomic energy commission). A more local description of the flow is then obtained in a second step by measuring the turbulence levels at different locations inside the test section thanks to the LDV technique. After quantifying the issues linked to the statistical convergence of the turbulent quantities in such specific configurations, we provide an estimation of the turbulent intensities produced by the mixing at various stages of its development.

Share - Bookmark

Cite this article