LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: French
Types: Article
Subjects: Architecture décisionnelle, Coopération multirobot, Replanification, Véhicules autonomes hétérogènes, Formalisation de connaissances, 621.39, Decisional architecture, Multirobot cooperation, Replanning, Heterogeneous autonomous vehicles, Knowledge formalisation
Ces dernières années, les engins robotisés n’ont cessé d’améliorer leur autonomie dans le domaine de la décision. Désormais, pour ne citer que l’exemple de véhicules aériens, nombre de drones sont largement capables, sans intervention d’un opérateur humain, de décoller, suivre un itinéraire en activant divers capteurs à des moments précis, atterrir en un lieu spécifié, suivre une cible, patrouiller sur une zone... Une des étapes suivantes consiste à faire collaborer une équipe de véhicules autonomes, de nature hétérogène (aériens, terrestres, marins...) afin de leur permettre d’accomplir des missions plus complexes. L’aspect dynamique de l’environnement réel, la non disponibilité à tout instant des moyens de communication, la coordination nécessaire des véhicules,de conceptions parfois différentes, dans l’exécution de certaines parties d’un plan de mission, sont autant d’obstacles à surmonter. Ce travail tente non seulement d’apporter quelques éléments de réponse face à ces difficultés, mais consiste aussi en la mise en place concrète d’un superviseur haut niveau, capable de gérer l’exécution d’une mission par une équipe de véhicules autonomes hétérogènes, où le rôle de l’opérateur humain est volontairement réduit. Nous décrivons dans ce mémoire l’architecture distribuée que nous avons choisi de mettre en œuvre pour répondre à ce problème. Il s’agit d’un superviseur, réparti à bord des véhicules autonomes, interfacé avec leur architecture locale et en charge de l’exécution de la mission d’équipe. Nous nous intéressons également à la formalisation des connaissances nécessaires au déroulement de cette mission, afin d’améliorer l’interopérabilité des véhicules de l’équipe, mais aussi pour expliciter les relations entre modèles décisionnels abstraits et réalité d’exécution concrète. Le superviseur est capable de réagir face aux aléas qui vont se produire dans un environnement dynamique. Nous présentons ainsi dans un second temps les stratégies mises en place pour parvenir à les détecter au mieux, ainsi que la façon dont nous procédons pour réparer partiellement ou totalement le plan de mission initial, afin de remplir les objectifs initiaux. Nous nous basons notamment sur la nature hiérarchique du plan de mission, mais aussi sur celle de la structure de sous-équipes que nous proposons de construire. Enfin, nous présentons quelques résultats obtenus expérimentalement, sur des missions simulées et des scénarios réels, notamment ceux du Programme d’Etudes Amont Action dans lequel s’inscrivent ces travaux de thèse. Many autonomous robots with specific control oriented architectures have already been developed worldwide.The advance of the work in this field has led researchers wonder for many years to what extent robots would be able to be integrated into a team consisting of autonomous and heterogeneous vehicles with complementary functionalities. However, robot cooperation in a real dynamic environment under unreliable communication conditions remains challenging, especially if these autonomous vehicles have different individual control architectures. In order to address this problem, we have designed a decision software architecture, distributed on each vehicle.This decision layer aims at managing execution and at increasing the fault tolerance of the global system. The mission plan is assumed to be hierarchically structured. ln case of failure detection, the plan repair is done as locally as possible, based on the hierarchical organization.This allows us to restrict message exchange only between the vehicles concerned by the repair process. Knowledge formalisation is also a part of the study permitting the improvement of interoperability between team members. It also provides relevant information all along mission execution, from initial planning computation to plan repair in this multirobot context. The feasibility of the system has been evaluated by simulations and real experiments thanks to the Action project (http://action.onera.fr/welcome/).
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article