LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Carvalho, Himilcon (1995)
Languages: French
Types: Article
Subjects: Filtrage optimal, Non-linéaire, Filtrage particulaire, Système Mondial de Positionnement (GPS), Navigation inertielle, 621.382 2, Optimum filtering, Nonlinear filtering, Particle filtering, Global positioning system, Inertial navigation
Dans ce mémoire, une nouvelle approche au filtrage non-linéaire optimal est utilisée dans le recalage SNI/GPS. Cette méthode, appelée Filtrage par résolution-particulaire (FP), permet le traitement de modèles non-linéaires sans aucune restriction ou limitation sur la nature des non-linéarités ou sur la distribution des bruits de dynamique ou d'observation. Le principe général du FP est de construire une approximation de la probabilité conditionnelle de la variable d’état à. estimer, relativement aux observations, à travers une exploration de l'espace d’états par des particules aléatoires. En attribuant à chacune des particules un poids, résultat d’une correction de Bayes, on obtient une approximation de cette mesure de probabilité par une mesure ponctuelle dont la précision est directement liée au nombre de particules utilisé. L'application de cette nouvelle technique de filtrage au couplage serré entre Inertie et GPS, a permis l’obtention de résultats qui excèdent en performance les méthodes appliquées jusqu’ici. This report describes the application of optimal nonlinear/non-Gaussian filtering to the problem of INS / GPS integration. This approach, is made possible by a new technique called Particle Filtering (PF) which may cope with nonlinear models without any limitation, and non-Gaussian noises as well. The main feature of this Particle Filtering is that it constructs the conditional probability of the variable to be estimated, with respect to the measurements, through a suitable random particle exploration of the state space followed by a Bayes correction of the particles’ Weights. The application of this new filtering method to the problem of tightly coupling GPS receivers to inertial navigation systems has permitted the achievement of very good results, when compared to the traditional methods hitherto used.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok