LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: French
Types: Article
Subjects: Vibrations basses fréquences, Superposition modale, Incertitudes, Oscillateur aléatoire, Copules, 620.1, Low frequency vibration, Modal superposition, Uncertainty, Random oscillator, Pair copula construction
Ces travaux de thèse s’inscrivent dans le cadre de la prise en compte des incertitudes des paramètres d’entrée d’un modèle éléments finis de structures spatiales. L’approche probabiliste a été utilisée pour quantifier l’influence de l’aléa sur les fonctions de transfert. Nous avons proposé une adaptation de la méthode de superposition modale au cadre probabiliste, basée sur l’identification de la loi de probabilité des variables des fonctions de transfert. Le verrou technologique que constitue la construction de lois de probabilité de grande dimension a été levé par l’utilisation de la théorie des copules. Finalement, la méthodologie proposée a été validée sur un exemple industriel et les perspectives offertes par l’étude des structures de dépendances entre variables d’une fonction de transfert sont prometteuses. This PhD thesis aims at take into account input parameters uncertainty of space structures finite element models. To achieve this goal probabilistic approach is used to quantify the influence of randomness on transfer functions. An adaptation of modal superposition method to the probabilistic framework is proposed. This original approach is based on the identification of the probability distribution of transfer function variables. The main difficulty concerns the construction of a large dimension probability distribution. This point is tackled by the use of copula theory. Finally, the proposed methodology is validated on an industrial example. Moreover, the analysis of the dependence structures between the transfer function variables offers a lot of perspectives.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article