LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: Motif d’échange innovant, CFD, Modèle ASST, LDV, PIV, Transfert thermique, Echangeurs thermiques à plaques, 621.042, Innovative heat exchanger, ASST model, Heat transfer, Plate heat exchanger
Dans le cadre du programme CEA R&D pour développer un prototype industriel de Réacteur à Neutrons Rapides refroidi au Sodium (RNR-Na), cette thèse vise à proposer une technologie d'échangeur de chaleur compact innovant. Afin d'augmenter la compacité globale du composant la conception est réalisée d’un canal: il peut être considéré comme le résultat de la superposition de deux canaux ondulés en opposition de phase. Afin de fournir un modèle numérique physiquement cohérent, un nouveau modèle de turbulence à viscosité turbulente non linéaire nommé modèle ASST a été développé et implémenté dans le solveur ANSYS FLUENT ®. Il a été démontré que le modèle ASST peut fournir une alternative intéressante aux modèles plus complexes. Pour valider le modèle ASST, deux montages expérimentaux ont été réalisés, dont un utilisant la Vélocimétrie Laser à franges et l'autre la Vélocimétrie Laser par images de particules. Pour la validation thermique, l'installation "VHEGAS" a été construite. Une fois le modèle ASST validé, les performances pour différentes géométries peuvent être étudiées. Enfin, il a été montré que la géométrie innovante est la plus compacte parmi les autres technologies d'échangeurs de chaleur compacts type PCHE. In the framework of CEA R&D program to develop an industrial prototype of Sodiumcooled Fast Reactor, the present thesis aimed to propose an innovative compact heat exchanger technology. In order to increase the global compactness the basic idea of this work is to design a channel were the fluid flow is as much three-dimensional as possible. In particular the channel can be thought as the result of the superposition of two undulated channels in phase opposition. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. To validate the numerical model, two experimental sections have been used to acquire an extensive aerodynamic database, whereas, to validate the thermal modeling approach, the VHEGAS facility has been built. Once having validated the ASST model, correlations for friction factor and Nusselt number for various geometries could be obtained. Finally, it has been shown that the innovative channel is the most compact one among the most important existing industrial compact heat exchanger technologies.

Share - Bookmark

Cite this article