LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
On Thursday 28/09/2017 and Friday 29/09/2017 due to system maintenance you might experience some downtimes to claim, search and validator services that will also affect the portal. We apologize for the inconvenience.
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dion, Arnaud (2014)
Languages: French
Types: Article
Subjects: Navigation, GPS, Galileo, Récepteur, Satellite, 621, Receiver
L’orbite d’un satellite autour de la terre est perturbée en permanence par différents facteurs, tels que la variation du champ gravitationnel et la pression du vent solaire. La dérive de la position du satellite peut compromettre la mission, voire mener à une collision ou à une chute dans l’atmosphère. Les opérations de maintien à poste consistent donc à effectuer une mesure précise de la trajectoire du satellite puis à utiliser ses propulseurs pour corriger sa dérive. La solution classique de mesure de position est basée sur des radars au sol. Ce dispositif est couteux et ne permet pas d’avoir la position du satellite en permanence : les corrections de trajectoires se font donc de façon espacées dans le temps. Un système de positionnement et de navigation autonome utilisant les constellations de satellites de navigation, appelées Global Navigation Satellite System (GNSS), permettrait une réduction importante des coûts de conception et de maintenance opérationnelle. Plusieurs études ont été menées en ce sens et les premiers systèmes de navigation, basés sur des récepteurs GPS, voient le jour. Un récepteur en mesure de traiter plusieurs systèmes de navigation, tel que GPS et Galileo, permettrait d’obtenir une meilleure disponibilité de service. En effet, le système Galileo est conçu pour être compatible avec le système GPS, tant en terme de signaux émis que de données de navigation. La connaissance permanente de la position permettrait alors de réaliser un contrôle asservit du maintien à poste. Dans un premier temps, nous avons défini quelles seront les spécifications d’un récepteur spatial multimission. En effet, les contraintes pesant sur un tel récepteur sont différentes de celles d’un récepteur situé à la surface de la Terre. L’analyse de ces contraintes, ainsi que des performances demandées à un système de positionnement, est donc nécessaire afin de déterminer les spécifications du futur récepteur. Il existe peu d’études sur le sujet. Certaines d’entre elles sont classées secret industriel, d’autres présentent, à notre avis, un biais d’analyse qui fausse la détermination des spécifications. Nous avons donc modélisé le système : orbites des satellites GNSS et des satellites récepteurs, liaison radiofréquence. Certains paramètres de cette liaison ne sont pas donnés dans les documents de spécifications ou les documents constructeurs. De plus, les données théoriques disponibles ne sont pas toujours pertinentes pour une modélisation réaliste. Nous avons donc dû estimer ces paramètres en utilisant des données disponibles. Le modèle a été ensuite utilisé afin de simuler divers scenarii représentatifs de futures missions. Après avoir défini des critères d’analyse, les spécifications ont été déterminées à partir des résultats des simulations. Le calcul d’une position par un système de navigation par satellite se déroule en trois phases principales. Pour chacune de ces phases, il existe plusieurs algorithmes possibles, présentant des caractéristiques différentes de performance, de taille de circuit ou de charge de calcul. L’essor de nouvelles applications basées sur la navigation entraine également le développement de nouveaux algorithmes adaptés. Nous présentons le principe permettant la détermination d’une position, puis les signaux de navigation GPS et Galileo. A partir de la structure des signaux, nous expliquons les phases de la démodulation et de la localisation. Grâce à l’utilisation des constellations GPS et Galileo, les algorithmes standards permettent d’atteindre les performances nécessaires pour des applications spatiales. Ces algorithmes nécessitent néanmoins d’être adaptés ; ainsi certaines parties ont été conçues spécifiquement. Afin de valider les choix d’algorithmes, et les paramètres liés aux spécifications, nous avons simulés les différentes phases de fonctionnement du récepteur en utilisant des signaux GPS réels. Pour terminer, les retombées et perspectives sont exposées dans la conclusion. The orbit of a satellite around the earth is constantly disturbed by various factors, such as variations in the gravitational field and the solar wind pressure. The drift of the satellite position can compromise the mission, and even lead to a crash or a fall in the atmosphere. The station-keeping operations therefore consist in performing an accurate measurement of the satellite trajectory and then in using its thrusters to correct the drift. The conventional solution is to measure the position with the help of a ground based radar. This solution is expensive and does not allow to have the satellite position permanently : the trajectory corrections are therefore infrequent. A positioning and autonomous navigation system using constellations of navigation satellites, called Global Navigation Satellite System (GNSS), allows a significant reduction in design and operational maintenance costs. Several studies have been conducted in this direction and the first navigation systems based on GPS receivers, are emerging. A receiver capable of processing multiple navigation systems, such as GPS and Galileo, would provide a better service availability. Indeed, Galileo is designed to be compatible with GPS, both in terms of signals and navigation data. Continuous knowledge of the position would then allow a closed loop control of the station keeping. Initially, we defined what the specifications of a multi-mission space receiver are. Indeed, the constraints on such a receiver are different from those for a receiver located on the surface of the Earth. The analysis of these constraints, and the performance required of a positioning system, is necessary to determine the specifications of the future receiver. There are few studies on the subject. Some of them are classified ; others have, in our view, an analytical bias that distorts the determination of specifications. So we modeled the system : GNSS and receivers satellite orbits, radio frequency link. Some parameters of this link are not given in the specification or manufacturers documents. Moreover, the available theoretical data are not always relevant for realistic modeling. So we had to assess those parameters using the available data. The model was then used to simulate various scenarios representing future missions. After defining analysis criteria, specifications were determined from the simulation results. Calculating a position of a satellite navigation system involves three main phases. For each phase, there are several possible algorithms, with different performance characteristics, the circuit size or the computation load. The development of new applications based on navigation also drives the development of new adapted algorithms. We present the principle for determining a position, as well as GPS and Galileo navigation signals. From the signal structure, we explain the phases of the demodulation and localization. Through the use of GPS and Galileo constellations, standard algorithms achieve the performance required for space applications. However, these algorithms need to be adapted, thus some parts were specifically designed. In order to validate the choice of algorithms and parameters, we have simulated the various operating phases of the receiver using real GPS signals. Finally, impact and prospects are discussed in the conclusion.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article