LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: National Aviation University
Languages: Ukrainian
Types: Unknown
Subjects: ефективність фотоелемента; нагрів фотоелемента; оптимізація розмірів фотоелемента, 536.242(045) [620.92], эффективность фотоелемента; нагрев фотоэлемента; оптимизация размеров фотоэлемента, efficiency of the photocell; heating of the photocell; photocell size optimization
Як відомо, сонячне випромінювання, потрапляючи на фотоелемент, перетворюється не тільки в електричну, але й у теплову енергію, нагріваючи його поверхню. Тільки 6–20 % сонячного випромінювання використовується для отримання електроенергії. Інша частина енергії в основному витрачається на нагрівання фотоелемента, що значно знижує ефективність його роботи. Коефіцієнт корисної дії перетворення сонячної енергії зменшується у разі збільшення температури. Цю статтю присвячено зменшенню впливу нагріву фотоелемента на ефективність перетворення ним сонячної енергії шляхом встановлення його на додаткову охолоджуючу поверхню, яка грає роль радіатора. Дані щодо величини сонячного випромінювання, яке падає на одиницю площі фотоелемента, температури навколишнього середовища та швидкості вітру взяті для м. Сімферополя. У роботі виконанийрозрахунок площі додаткової охолоджуючої поверхні. Встановлено, що для повної компенсації нагріву фотоелемента площа цієї поверхні повинна бути в 2 – 2,2 рази більша за площу фотоелемента. У результаті моделювання були отримані дані не щодо площі додаткової поверхні А', а щодо відношення цієї площі до площі фотоелемента А'/А. Ці відомості, на думку авторів, є більш наочними, універсальними та зручними для подальшого аналізу. Как известно, солнечное излучение, попадая на фотоэлемент, преобразуется не только в электрическую, но и в тепловую энергию, нагревая его поверхность. Только 6–20 % падающего на фотоэлемент солнечного излучения используется для получения электричества. Остальная энергия, в большей степени, идет на нагрев фотоэлемента, что значительно снижает эффективность работы фотоэлемента. Коэффициент полезного действия преобразования солнечной энергии уменьшается при повышении температуры. Данная работа посвящена уменьшению влияния нагрева фотоэлемента на эффективность преобразования им солнечной энергии путем установки его на дополнительную охлаждающую поверхность, которая играет роль радиатора. Данные о величине солнечного излучения, падающего на единицу площади фотоэлемента, температуре окружающей среды и скорости ветра взяты для города Симферополя. Произведен расчет площади дополнительной охлаждающей поверхности. Определено, что для полной компенсации нагрева фотоэлемента падающим солнечным излучением площадь этой поверхности в 2 – 2,2 раза должна быть больше площади самого фотоэлемента. В результате моделирования были получены данные не о площади дополнительной охлаждающей поверхности А', а об отношении этой площади к площади самого фотоэлемента А'/А. Эти сведения, по мнению авторов, являются более репрезентативными, универсальными и удобными для последующего анализа. The incident solar radiation is converted by the photocell not only into electrical energy, but also into thermal energy, that heats its surface. Only 6 – 20% of the incident solar radiation is used by photocell to produce electricity. The remaining energy, mainly, goes into heating the photocell. The solar energy conversion efficiency of photocells decreases in case of temperature increasing. This work is devoted to reduce the photocell’s heating effect on its solar energy conversion efficiency by installing it on additional cooling surface, which serves as a radiator. Data about the amount of solar radiation, that falls per unit area of the photocell, the ambient temperature and wind speed is taken for Simferopol city. Based on the simulation results the area of an additional cooling surface is calculated. The area of additional cooling surface A' during the year changes insignificantly, and 2 – 2.2 times bigger than the area of the photocell A. The simulation data was obtained for the ratio of additional cooling surface area to the area of the photocell A'/A. This information, according to the authors, is representative, universal and suitable for further analysis.
  • No references.
  • No related research data.
  • No similar publications.