LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
On Thursday 28/09/2017 and Friday 29/09/2017 due to system maintenance you might experience some downtimes to claim, search and validator services that will also affect the portal. We apologize for the inconvenience.
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Национальный Авиационный Университет
Languages: Russian
Types: Unknown
Subjects: математическое моделирование, автоматическое управление, цифровая обработка сигналов, полиномиальная аппроксимация, динамическая система
 Предложена методика оценивания средних значений непрерывного сигнала и его первой и второй производных при дискретизации по аргументу с шагом h. Методика основана на использовании метода полиномиальной аппроксимации с базисной системой локального типа на основе смещенных полиномов Лежандра. Рассмотрен иллюстративный  пример применения методики. Вычислительный эксперимент выполнен в программной среде системы Mathematica®.  The method of estimating of mean values of the continuous signal and its first and second derivatives with respect to the argument with a sampling step h is proposed. The technique is based on the method of polynomial approximation via the basis system of local type on the basis of the shifted Legendre polynomials. An illustrative example of the application procedure is considered. Computing experiment is made in the programming environment of Mathematica ®.
  • No references.
  • No related research data.
  • No similar publications.