LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
On Thursday 28/09/2017 and Friday 29/09/2017 due to system maintenance you might experience some downtimes to claim, search and validator services that will also affect the portal. We apologize for the inconvenience.
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: National Aviation University
Journal: Vìsnik Nacìonalʹnogo Avìacìjnogo Unìversitetu
Languages: English
Types: Unknown
Subjects: neural network Fuzzy-ART, nondestructive testing, Motor vehicles. Aeronautics. Astronautics, neural networks, TL1-4050, composite materials; neural network Fuzzy-ART; neural networks; nondestructive testing, composite materials
Досліджено використання модифікованої нейронної мережі Fuzzy-ART в системінеруйнівного контролю стільникових панелей. Описано структуру та принцип діїрозробленої системи неруйнівного контролю виробів із композиційних матеріалів. Приведенорезультати використання розробленої системи для діагностики технічного станустільникових панелей.Ключові слова: композиційні матеріали, нейронна мережа Fuzzy-ART, нейронні мережі,неруйнівний контроль. In this article proposed to use a modified neural network Fuzzy-ART for classification of thetechnical condition of composite materials. This neural network is used as a part of nondestructivetesting system to perform diagnosis of composite materials and provides cluster analysis andclassification of units under test. The advantage of the described neural network and the system ingeneral is its flexible architecture, high performance and high reliability of data processing