Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Eichler, Ania; Schwikowski, Margit; Gäggeler, Heinz W. (2001)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
In order to interpret glaciochemical records with respect to the history of air pollution, an understanding of post-depositional processes taking place in firn and ice is crucial. In a 13-m firn section of an Alpine ice core, we observed a drastic disturbance of the concentration records of certain ionic species which we attribute to the inflow of meltwater. This observation opened up the possibility to investigate the effects of leaching processes on the chemical composition of a natural firn layer. Species were leached with different efficiencies: Whereas the normal seasonal pattern of the concentrations of NH+4, F−, Cl−, and NO−3 and of the δ18O values was preserved, concentrations of K−, Na+, Mg2+, Ca2+, and SO2−4 were significantly decreased. From the patterns of the concentration ratios the elution sequence SO2−4>Ca2+∼Mg2+>K+∼Na+≫NO−3>NH+4∼F−>Cl− was established, which could be explained by ion rearrangement during snow metamorphism. An incorporation of the species Cl−, F−, NH+4, and NO−3 into the ice lattice during grain growth caused their least efficient scavenging by percolating meltwater. In contrast, the predominate exclusion of the ions SO2−4, Ca2+, Mg2+, K+, and Na+ from the ice lattice due to their low solubility in ice and the subsequent segregation at grain surfaces led to the fast removal of these species from the firn layer.DOI: 10.1034/j.1600-0889.2001.d01-15.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bales, R. C., Davies, R. E. and Stanley, D. A. 1989. Ion elution through shallow homogeneous snow. Water Resources Research 25, 1869-1877.
    • Brimblecombe, P., Tranter, M., Abrahams, P. W., Blackwood, I., Davies, T. D. and Vincent, C. E. 1985. Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment. Annals of Glaciology 7, 141-147.
    • Brimblecombe, P., Clegg, S. L., Davies, T. D., Shooter, D. and Tranter, M. 1987. Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Research 21, 1279-1286.
    • Brimblecombe, P., Clegg, S. L., Davies, T. D., Shooter, D. and Tranter, M. 1988. The loss of halide and sulphate ions from melting ice. Water Res. 22, 693-700.
    • BUWAL. 1999. NABEL -L uftbelastung 1998. Messresultate des Nationalen Beobachtungsnetzes f u¨r LuftfremdstoVe, Schriftenreihe Umwelt Nr. 311, Bundesamt f u¨r Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland, 194 pp.
    • Colbeck, S. C. 1987. Snow metamorphism and classification. In: Seasonal snowcovers: physics, chemistry and hydrology (eds. H. G. Jones and W. J. Orville-Thomas). D. Reidel, Dortrecht, pp. 1-35.
    • Cragin, J. H., Hewitt, A. D. and Colbeck, S. C. 1996. Grain-scale mechanisms influencing the elution of ions from snow. Atmospheric Environment 30, 119-127.
    • Dansgaard, W. 1964. Stable isotopes in precipitation. T ellus 16, 436-468.
    • Davis, R. E. 1991. Links between snowpack physics and snowpack chemistry. In: Seasonal snowpacks: processes of compositional change (eds. T. D. Davies, M. Tranter and H. G. Jones). Springer Verlag, Berlin, etc., pp. 115-138. (NATO ASI Series G: Ecological Sciences 28.)
    • de Angelis, M. and Legrand, M. 1994. Origins and variations of fluoride in Greenland precipitation. Journal of Geophysical Research 99 (D1), 1157-1172.
    • Delmas, R. J. 1993. A natural artefact in Greenland icecore CO2 measurements. T ellus 45B, 391-396.
    • Domine´, F. and Thibert, E. 1996. Mechanism of incorporation of trace gases in ice grown from the gas phase. Geophysical Research L etters 23, 3627-3630.
    • Eichler, A., Schwikowski, M., Ga¨ggeler, H. W., Furrer, V., Synal, H.-A., Beer, J., Saurer, M. and Funk, M. 2000. Glaciochemical dating of an ice core from the upper Grenzgletscher (4200 m a.s.l.). Journal of Glaciology 46, 507-515.
    • Fukazawa, H., Sugiyama, K., Mae, S., Narita, H. and Hondoh, T. 1998. Acid ions at triple junction of Antarctic ice observed by Raman scattering. Geophysical Research L etters 25, 2845-2848.
    • Ga¨ggeler, H. W., StauVer, B., D o¨scher, A. and Blunier, T. 1997. Klimageschichte im Alpenraum aus Analysen von Eisbohrkernen. Vdf Hochschulverlag AG, Z u¨rich, 61 pp.
    • Goto-Azuma, K., Nakawo, M., Jiankang, H., Watanabe, O. and Azuma, N. 1994. Melt-induced relocation of ions in glaciers and in a seasonal snowpack. IAHS Publication No. 223, pp. 287-298.
    • Gross, G. W., Hayslip, I. C. and Hoy, R. N. 1978. Electrical conductivity and relaxation in ice crystals with known impurity content. Journal of Glaciology 21, 143-159.
    • Gross, G. W. and Svec, R. K. 1997. EVect of ammonium on anion uptake and dielectric relaxation in laboratory-grown ice columns. Journal of Physical Chemistry B 101, 6282-6284.
    • Hewitt, A. D., Cragin, J. H. and Colbeck, S. C. 1989. Does snow have ion chromatographic properties? In: Proceedings of the 46th Annual Eastern Snow Conference, 8-9 June, Quebec City, Quebec, pp. 165-171.
    • Hewitt, A. D., Cragin, J. H. and Colbeck, S. C. 1991. EVects of crystal metamorphosis on the elution of chemical species from snow. In: Proceedings of the 48th Annual Eastern Snow Conference, Guelph, Ontario, 2-10 June.
    • Hobbs, P. V. 1974. Ice physics. Oxford, Clarendon press, 837 pp.
    • Johannessen, M. and Henriksen, A. 1978. Chemistry of snow meltwater: Changes in concentration during melting. Water Resources Research 14, 615-619.
    • Johnsen, S. J. 1977. Stable isotope homogenization of polar firn and ice. In: Proceedings of the Grenoble Symposium, Aug./Sept. 1975, IAHS-AISH Publication No. 118, pp. 210-219.
    • Keene, W. C., Pszenny, A. A. P., Galloway, J. N. and Hawley, M. E. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research 91 (D6), 6647-6658.
    • Kreutz, K. J., Mayewski, P. A., Whitlow, S. I. and Twickler, M. S. 1998. Limited migration of soluble ionic species in a Siple Dome, Antarctica, ice core. Annals of Glaciology 27, 371-377.
    • Levi, L. and Arias, D. 1964. Conductivite´ en courant continu de la glace dope´e avec diVe´rents hydracides. J. Chim. Phys. 61, 668-671.
    • Lugauer, M., Baltensperger, U., Furger, M., Ga¨ggeler, H. W., Jost, D. T., Schwikowski, M. and Wanner, H. 1998. Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl ) and Colle Gnifetti (4452 m asl ). T ellus 50B, 76-92.
    • Maupetit, F., Wagenbach, D., Weddeling, P. and Delmas, R. J. 1995. Seasonal fluxes of major ions to a high altitude cold alpine glacier. Atmospheric Environment 29, 1-9.
    • Mosimann, L., Weingartner, E. and Waldvogel, A. 1994. An analysis of accreted drop sizes and mass on rimed snow crystals. Journal of the Atmospheric Sciences 51, 1548-1558.
    • Mulvaney, R., WolV, E. W. and Oates, K. 1988. Sulphuric acid at grain boundaries in Antarctic ice. Nature 331, 247-249.
    • Pruppacher, H. R. and Klett, J. D. 1997. Microphysics of clouds and precipitation. Kluwer Academic Publishers, Netherlands, 954 pp.
    • Riley, N. W., Noll, G. and Glenn, J. W. 1978. The creep of NaCl-doped ice monocrystals. Journal of Glaciology 21, 501-507.
    • Schotterer, U., Fro¨hlich, K., Ga¨ggeler, H. W., Sandjordj, S. and Stichler, W. 1997. Isotope records from Mongolian and Alpine ice cores as climate indicators. Clim. Change 36, 519-530.
    • Schwander, J. 1996. Gas diVusion in firn. In: Chemical exchange between the atmosphere and polar snow (eds. E. W. WolV and R. C. Bales). Springer Verlag, Berlin, etc., pp. 527-540. (NATO ASI Series I: Global environmental change 43.)
    • Schwikowski, M., Br u¨tsch, S., Ga¨ggeler, H. W. and Schotterer, U. 1999. A high resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journal of Geophysical Research 104 (D11), 13,709-13,720.
    • Sigg, A. and Neftel, A. 1991. Evidence for a 50% increase in H2O2 over the past 200 years from a Greenland ice core. Nature 351, 557-559.
    • Suter, S. 1995. Die Verbreitung kalter Firn- und Eisregionen im Alpengebiet. Diploma T hesis, ETH Z u¨rich, Switzerland.
    • Szyrmer, W. and Zawadzki, I. 1997. Biogenic and anthropogenic sources of ice-forming nuclei: a review. Bulletin of the American Meteorological Society 78, 209-228.
    • Thibert, E. and Domine´, F. 1997. Thermodynamics and kinetics of the solid solution of HCl in ice. Journal of Physical Chemistry B 101, 3554-3565.
    • Thibert, E. and Domine´, F. 1998. Thermodynamics and kinetics of the solid solution of HNO3 in ice. Journal of Physical Chemistry B 102, 4432-4439.
    • Tranter, M., Tsiouris, S., Davies, T. D. and Jones, H. G. 1992. A laboratory investigation of the leaching of solute from snowpack by rainfall. Hydrol. Process. 6, 169-178.
    • Tsiouris, T., Vincent, C. E., Davies, T. D. and Brimblecombe, P. 1985. The elution of ions through field and laboratory snowpacks. Annals of Glaciology 7, 196-201.
    • Wagnon, P., Delmas, R. J. and Legrand, M. 1999. Loss of volatile acid species from upper firn layers at Vostok, Antarctica. Journal of Geophysical Research 104 (D3), 3423-3431.
    • WolV, E. W. 1996. Location, movement and reactions of impurities in solid ice. In: Chemical exchange between the atmosphere and polar snow (eds. E. W. WolV and R. C. Bales). Springer Verlag, Berlin, etc., pp. 541-560. (NATO ASI Series I: Global environmental change 43.)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from