LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Valsala, Vinu; Maksyutov, Shamil (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
We used an offline tracer transport model, driven by reanalysis ocean currents and coupled to a simple biogeochemical model, to synthesize the surface ocean pCO2 and air–sea CO2 flux of the global ocean from 1996 to 2004, using a variational assimilation method. This oceanic CO2 flux analysis system was developed at the National Institute for Environmental Studies (NIES), Japan, as part of a project that provides prior fluxes for atmospheric inversions using CO2 measurements made from an on-board instrument attached to the Greenhouse gas Observing SATellite (GOSAT). Nearly 250 000 pCO2 observations from the database of Takahashi et al. (2007) have been assimilated into the model with a strong constraint provide by ship-track observations while maintaining a weak constraint of 20% on global averages of monthly mean pCO2 in regions where observations are limited. The synthesized global air–sea CO2 flux shows a net sink of 1.48 PgC yr-1. The Southern Ocean air–sea CO2 flux is a sink of 0.41 PgC yr-1. The interannual variability of synthesized CO2 flux from the El Niño region suggests a weaker source (by an amplitude of 0.4 PgC yr-1) during the El Niño events in 1997/1998 and 2003/2004. The assimilated air–sea CO2 flux shows remarkable correlations with the CO2 fluxes obtained from atmospheric inversions on interannual time-scales.DOI: 10.1111/j.1600-0889.2010.00495.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, D. F., Doney, S. C. and Schimel, D. S. 2006. Variational data assimilation for atmospheric co2. Tellus 58B, 359-365.
    • Bennett, A. F. 2002. Inverse Modeling of the Ocean and Atmopshere. Cambridge University Press, New York, NY, 234 pp.
    • Bryan, K. and Lewis, L. J. 1979. A watermass model of the World ocean. J. Geophys. Res. 84, 2503-2517.
    • Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V. and co-authors. 2006. GFDL's CM2 Global coupled climate models. Part I: Formulation and simulation characteristics. J. Clim. 19, 643- 674.
    • Dutkiewicz, S., Marshall, M. F. J. and Gregg, W. W. 2001. Interannual variability of phytoplankton abundances in the north Atlantic. DeepSea Res. 48, 2323-2344.
    • Feely, R. A., Boutin, J., Cosca, E. C., Dandonneau, Y., Etcheto, J. and co-authors. 2002. Sesonal and interannual variability of co2 in the equatorial pacific. Deep-Sea Res. 14, 2443-2469.
    • Feely, R. A., Wanninkhof, R., Takahashi, T. and Tans, P. 1999. Influence of el nin˜o on the equatorial pacific contribution to atmospheric CO2 accumulation. Nature 398, 365-386.
    • Fukumori, I., Cheng, T. L. and. B. and Menemenlis, D. 2004. The origine, pathway and destination of Nin˜o-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr. 34, 582-604.
    • Gent, P. R. and McWilliams, J. C. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150-155.
    • Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Barreiro, M. and co-authors. 2006. GFDL's CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Clim. 19, 675-697.
    • Griffies, S. M. and Hallberg, R. W. 2000. Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. J. Phys. Oceanogr. 128, 2935-2946.
    • Gruber, M. Gloor, M., Fletcher, S. E. M., Doney, S. C., Dutkiewicz, S. and co-authors. 2009. Oceanic sources, sinks and transport of atmospheric CO2. Global Biogeochem. Cycles 23, doi:10.1029/2008GB003349.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. and Transom-3-L2-modelers 2004. Transcom-3 inversion intercomparison: control results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles 18, doi:10.1029/2003GB002111.
    • Hourdin, F. and Talagrand, O. 2002. Eulerian backtracking of atmospheric tracers: I adjoint derivation and parametrization of subgridscale transport. Quart. J. Roy. Meteor. Soc. 128, doi:10.1256/qj.yy.n.
    • Hourdin, F., Talagrand, O. and Idelkadi, A. 2002. Eulerian backtracking of atmospheric tracers: II Numerical aspects. Quart. J. Roy. Meteor. Soc. 128, doi:10.1256/qj.yy.n.
    • Ikeda, M. and Sasai, Y. 2000. Reconstruction of subsurface DIC and alkalinity fields in the north pacific using assimilation of upper ocean data. Mar. Chem. 72, 343-358.
    • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. and Gloor, M. 2007. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Global Biogeochem. Cycles 21, doi:10.1029/2006GB002703.
    • Keeling, C. D., Bacastow, R. B. and Whorf, T. P. 1982. Measurements of the concentration of carbon dioxide at mauna loa observatory, Hawaii. Carbon Dioxide Review 110, Oxford University Press, New York, NY, pp. 377-385.
    • Keeling, C. D., Brix, H. and Gruber, N. 2004. Seasonal and long-term dynamics of the upper ocean carbon cycle at station ALOHA near Hawaii. Global Biogeochem. Cycles 110, doi:10.1029/2004GBC002227.
    • Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorl, T. P. and co-authors. 2001. Exchanges of atmospheric CO2 and δ13CO2 with the terrestrial biosphere and oceans from 1978 to 2001. Global aspects. Reference Series: 01-06 Scripps Institute of Oceanographs, La Jolla, California.
    • Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R. and co-authors. 2004. A global ocean carbon climatology: results from Global Ocean Data Analysis Project (GLODAP). J. Geophys. Res. 18, doi:10.1029/2004GB002247.
    • Large, W. G., McWilliams, J. C. and Doney, S. C. 1994. Ocean vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363-403.
    • Large, W. G. and Yeager, S. G. 2008. The global climatology of an interannually varying air-sea flux data set. Climate Dyn. doi:10.1007/s00382-008-0441-3.
    • Le Quere, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O. and co-authors. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol. 11, 2016-2040.
    • Le Quere, C., Orr, J. C., Monfray, P., Aumont, O. and Madec, G. 2000. Interannual variability of the oceanic sink of co2 from 1979 through 1997. Global Biogeochem. Cycles 14, 1247-1265.
    • Le Quere, C., Ro¨denbeck, C., Buitenhuis, E. T., Conway, T. J., Gomez, R. L. and A. and co-authors. 2007. Saturation of the southern ocean CO2 sink due to recent climate change. Science 316, 1735-1738.
    • Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G. and co-authors. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. Geophys. Res. Lett. 33, doi:10.1029/2006GL027207.
    • Lenton, A. and Matear, R. 2007. Role of the Southern Annular Mode (SAM) in southern ocean CO2 uptake. Global Biogeochem. Cycles 21, doi:10.1029/2006GB002714.
    • Maksyutov, S., Nakatsuka, Y., Valsala, V., Saito, M., Kadygrov, N. and co-authors. 2010. Algorithms for carbon flux estimation using GOSAT observational data. CGER'S Supercomput. Monogr. 15, 1-112.
    • McKinley, G. A., Follows, M. J. and Marshall, J. 2004. Mechanism of air-sea CO2 flux variability in the equatorial Pacific and North Atlantic. Global Biogeochem. Cycles 18, doi:10.1029/2003GB002179.
    • Obata, A. and Kitamura, Y. 2003. Interannual variability of the airsea exchange of CO2 from 1961 to 1998 simulated with a global ocean circulation-biogeochemistry model. J. Geophys. Res. 108, doi:10.1029/2001JC001088.
    • Orr, J. C., Najjar, R., Sabine, C. L. and Joos, F. 1999. Abiotic-HOWTO. LSCE/CEA Saclay, Gif-sur-Yvette, France, 25 pp.
    • Patra, P. K. and Maksyutov, S. 2002. Incremental approach to the optimal network design for CO2 surface source inversion. Geophys. Res. Lett. 29, doi:10.1029/2001GL013943.
    • Patra, P. K., Maksyutov, S., Ishizawa, M., Nakazawa, T., Takahashi, T. and co-authors. 2005. Interannual and decadal changes in the airsea CO2 flux from atmospheric CO2 inverse modeling. Global Biogeochem. Cycles 19, doi:10.1029/2004GB002257.
    • Ro¨denbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919-1964.
    • Takahashi, T., Sutherland, S. C. and Kozyr, A. 2007. Global ocean surface water partial pressure of CO2 database: measurements performed during 1968-2006 (Version 1.0). ornl/cdiac-152, ndp-08. Carbon Dioxide Information Analysis Center 20.
    • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A. and co-authors. 2009. Climatological mean and decadal changes in surface ocean pCO2 and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56, 554-577.
    • Thomas, H., Prowe, A. E. F., Lima, I. D., Doney, S. C., Wanninkhof, R. and co-authors. 2008. Changes in the north Atlantic oscillation influence CO2 uptake in the north atlantic over the past 2 decades. CGER'S Supercomput. Monogr. 22, doi:10.1029/2007GB003167.
    • Tjiputra, J. F., Polzin, D. and Winguth, A. E. 2007. Assimilation of seasonal chlorophyll and nutrient data into an adjoint threedimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization. Global Biogeochem. Cycles 21, doi:1029/2006GB002745.
    • Uppala, S., Kallberg, P., Hernandez, A., Saarinen, S., Fiorino, M. and co-authors. 2004. ERA-40. ECMWF 45-year reanalysis of the global atmopshere and surface conditions 1957-2002. ECMWF Newslett. 101, 2-21.
    • Valsala, K. V., Maksyutov, S. and Ikeda, M. 2008. Design and validation of an offline oceanic tracer transport model for a carbon cycle study. J. Clim. 21, 2752-2769.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373-7382.
    • Weiss, R. F. 1974. Carbon dioxide water and sea water: the solubility of a non-ideal gas. Mar. Chem. 2, 203-215.
    • Wetzel, P., Winguth, A. and Maier-Reimer, E. 2005. Sea to air CO2 flux from 1948 to 2003. A model study. Global Biogeochem. Cycles 19, doi:10.1029/2004GB002339.
    • Yumimoto, K. and Uno, I. 2006. Adjoint inverse modeling of co emissions over eastern Asia using four-dimensional variational data assimilation. Atmos. Environ. 40, doi:10.1016/j.atmosenv.2006. 05.042.
    • Zeng, J., Nojiri, Y., Murphy, P. P., Wong, C. S. and Fujinuma, Y. 2002. A comparison of δpCO2 distributions in the northern north Pacific using results from a commercial vessel in 1995-1999. Deep-Sea Res. 49, 5303-5315.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    52
    52%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from