LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kirpa Ram; M.M. Sarin (2012)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: 210Po activities, Meteorology. Climatology, QC851-999, atmospheric 210Pb, biomass burning emission, Indo-Gangetic Plain, atmospheric 210Pb; 210Po activities; biomass burning emission; Indo-Gangetic Plain
Atmospheric 210Pb, 210Po and their activity ratio (210Po/210Pb) have been studied for two years (January 2007–April 2009) from an urban site (Kanpur: 26.5°N and 80.3°E) in the Indo-Gangetic Plain. The average activities of 210Pb and 210Po centre on 1.8 mBq m−3 (range: 0.5–4.8 mBq m−3 for n=99) and 0.094 mBq m−3 (n=21, range: 0.002–0.28 mBq m−3), respectively. The temporal variability in the activity of 210Pb is significantly pronounced, with relatively high levels during October–November and December–February; a trend similar to that observed for the carbonaceous species. The high aerosol abundance coinciding with the biomass burning emissions (agricultural-waste burning) during October–November and stagnant boundary layer in the wintertime (December–February) is the dominant factor for the observed temporal trend. The preliminary data suggest that biomass burning emissions also contribute to the atmospheric 210Po activity, as evident from the large variability in the 210Po/210Pb activity ratio (range: 0.02–0.23) at this urban site. These results have implications to the model-based activity levels of 210Pb and 210Po from in-situ decay of the parent nuclide (222Rn) for given latitude.Keywords: atmospheric 210Pb; 210Po activities; biomass burning emission; Indo-Gangetic Plain(Published: 23 March 2012)Citation: Tellus B 2012, 64, 17513, DOI: 10.3402/tellusb.v64i0.17513
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ali, N., Khan, E. U., Akhter, P., Khattak, N. U., Khan, F. and co-authors. 2011. The effect of air mass origin on the ambient concentrations of 7Be and 210Pb in Islamabad, Pakistan. J. Environ. Radioact. 102, 35 42.
    • Arimoto, R., Hogan, A., Grube, P., Davis, D., Webb, J. and co-authors. 2004. Major ions and radionuclides in aerosol particles from the South Pole during ISCAT-2000. Atmos. Environ. 38(32), 5473 5484.
    • Baskaran, M. 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review. J. Environ. Radioact. 102(5), 500 513.
    • Baskaran, M. and Shaw, G. E. 2001. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. J. Aerosol Sci. 32(4), 443 452.
    • Dlugosz, M., Grabowski, P. and Bem, H. 2010. 210Pb and 210Po radionuclides in the urban air of Lodz, Poland. J. Radioanal. Nucl. Chem. 283(3), 719 725.
    • Draxler, R. R. and Rolph, G. D. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD. Model access via NOAA ARL READY Website, Online at: http://www.arl.noaa. gov/ready/hysplit4.html
    • Duenas, C., Fernandez, M. C., Carretero, J., Liger, E. and Canete, S. 2004. Long-term variation of the concentrations of long-lived Rn descendants and cosmogenic 7Be and determination of the MRT of aerosols. Atmos. Environ. 38(9), 1291 1301.
    • Francis, C. W., Chesters, G. and Erhardt, W. H. 1968. Polonium210 entry into plants. Environ. Sci. Technol. 2(9), 690 695.
    • Fukuma, H. T., Fernandes, E. A. N. and Quinelato, A. L. 2000. Distribution of natural radionucildes during the processing of phosphate rock from Itataia-Brazil for production of phosphoric acid and uranium concentrate. Radiochimica Acta 88, 809.
    • Gaggeler, H. W., Jost, D. T., Baltensperger, U., Schwikowski, M. and Seibert, P. 1995. Radon and thoron decay product and 210Pb measurements at Jungfraujoch, Switzerland. Atmos. Environ. 29(5), 607 616.
    • Gustafsson, O¨., Krusa˚ , M., Zencak, Z., Sheesley, R.J., Granat, L. and co-authors. 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? Science, 323, 495 498.
    • Hammer, S., Wagenbach, D., Preunkert, S., Pio, C., Schlosser, C. and co-authors. 2007. Lead-210 observations within CARBOSOL: a diagnostic tool for assessing the spatiotemporal variability of related chemical aerosol species? J. Geophys. Res. 112, D23S03, doi:10.1029/2006JD008065.
    • Kim, G., Hong, Y., -L.,Jang, J., Lee, I., Hwang, D.-W. and co-authors. 2005. Evidence for anthropogenic 210Po in the urban atmosphere of SeoulKorea. Environ. Sci. Technol., 39(6), 1519 1522.
    • Kim, G., Hussain, N. and Church, T. M. 2000. Excess 210Po in the coastal atmosphere. Tellus-B 52(1), 74 80.
    • Kritz, M. A., Rosner, S. W., Danielsen, E. F. and Selkirk, H. B. 1991. Air mass origins and troposphere-to-stratosphere exchange associated with midlatitude cyclogenesis and tropopause folding inferred from 7Be measurements. J. Geophys. Res. 96, 17405 17414.
    • Lambert, G., Le Cloarec, M. F., Ardouin, B. and Le Roulley, J. C. 1985. Volcanic emission of radionuclides and magma dynamics. Earth Planet. Sci. Lett. 76(1 2), 185 192.
    • LeCloarec, M. F., Ardouin, B., Cachier, H., Liousse, C., Neveu, S. and co-authors. 1995. 210Po in savanna burning plumes. J. Atmos. Chem. 22(1 2), 111 122.
    • Levin, I., Born, M., Cuntz, M., LangendO¨ Rfer, U., Mantsch, S. and co-authors. 2002. Observations of atmospheric variability and soil exhaaltion rate of radon-222 at a Russian forest site. Technical approach and deployment for boundary layer studies. Tellus B, 54(5), 462 475.
    • Liu, H., Jacob, D. J., Dibb, J. E., Fiore, A. M. and Yantosca, R. M. 2004. Constraints on the sources of tropospheric ozone from 210Pb-7Be-O3 correlations. J. Geophys. Res. 109(7), D07306 1 15.
    • Lozano, R. L., San Miguel, E. G. and Bolı´ var, J. P. 2011. Assessment of the influence of in situ 210Bi in the calculation of in situ 210Po in air aerosols: Implications on residence time calculations using 210Po/210Pb activity ratios. J. Geophys. Res. 116, D08206. DOI: 10.1029 /2010JD014915.
    • Malakhov, S. G., Bakulin, V. N., Dmitrieva, G. V., Kirichenko, L. V., Ssissigina, T.I. and co-authors. 1966. Diurnal variations of radon and thoron decay product concentrations in the surface layer of the atmosphere and their washout by precipitations. Tellus-B, 18, 643 654.
    • Manigandan, P. K. 2009. Transfer of naturalradionuicdles from soil to palnts in tropical forest (Western Ghats India). Int. J. Physical Sci. 4(5), 285 289.
    • Marley, N. A., Gaffney, J. S., Drayton, P. J., Cunningham, M. M., Orlandini, K. A. and co-authors. 2000. Measurement of 210Pb, 210Po, and 210Bi in size-fractionated atmospheric aerosols: an estimate of fine-aerosolresidence times. Aerosol Sci. Technol. 32(6), 569 583.
    • May, B., Wagenbach, D., Hammer, S., Steier, P., Puxbaum, H. and co-authors. 2009. The anthropogenic influence on carbonaceous aerosol in the European background. Tellus-B, 61(2), 464 472.
    • McNeary, D. and Baskaran, M. 2003. Depositional characteristics of 7Be and 210Pb in southeastern Michigan. J. Geophys. Res. 108, 4220. DOI: 10.1029/2002JD003021.
    • McNeary, D. and Baskaran, M. 2007. Residence times and temporal variations of 210Po in aerosols and precipitation from southeastern Michigan, United States. J. Geophys. Res. 112, D04208. DOI: 10.1029/2006JD007639.
    • Menzel, R. G. 1968. Uranium, radium, and thorium content in phosphate rocks and their possible radiation hazard. J. Agric. Food Chem. 16(2), 231 234.
    • Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S. and co-authors. 2007. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J. Geophys. Res. 112, D13205. DOI: 10.1029/2006JD008099.
    • Nho, E.-Y., Ardouin, B., Le Cloarec, M. F. and Ramonet, M. 1996. Origins of 210Po in the atmosphere at Lamto, Ivory Coast: biomass burning and Saharan dusts. Atmos. Environ. 30(22), 3705 3714.
    • Nho, E.-Y., Le Cloarec, M.-F., Ardouin, B. and Ramonet, M. 1997. 210Po, an atmospheric tracer of long-range transport of volcanic plumes. Tellus-B 49(4), 429 438.
    • Papastefanou, C. 2006. Residence time of tropospheric aerosols in association with radioactive nuclides. Appl. Radiat. Isot. 64(1), 93 100.
    • Poet, S. E., Moore, H. E. and Martell, E. A. 1972. Lead-210, bismuth-210, and polonium-210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determinationx. Appl. Radiat. Res. 77(33), 6515 6527.
    • Peirson, D. H., Cambray, R. S. and Spicer, G. S. 1966. Lead-210 and polonium-210 in the atmosphere. Tellus 18(2), 427 433.
    • Ram, K., Sarin, M. M. and Tripathi, S. N. 2010. A 1 year record of carbonaceous aerosols from an urban location (Kanpur) in the Indo-Gangetic Plain: characterization, sources and temporalvariabiitly. J. Geophys. Res. 115, D24313. DOI: 10.1029/2010JD014188.
    • Ramola, R. C., Gusain, G. S., Badoni, M., Prasad, Y., Prasad, G. and co-authors. 2008. 226Ra, 232Th and 40K contents in soil samples from Garhwal Himalaya, India, and its radiological implications J. Radiol. Prot. 28(3). DOI: 10.1088/0952-4746/28/ 3/008.
    • Rani, A. and Singh, S. 2005. Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using g-ray spectrometry. Atmos. Environ. 39, 6306 6314.
    • Rangarajan, C. 1992. A study of the mean residence time of the natural radioactive aerosols in the planetary boundary layer. J. Environ. Radioact. 15(3), 193 206.
    • Rangarajan, C. and Eapen, C. D. 1990. The use of natural radioactive tracers in a study of atmospheric residence times. Tellus-B 42(1), 142 147.
    • Rao, M. V. N., Bhati, S. S., Seshu, P. R. and Reddy, A. R. 1996. Natural radioactivity in soil and radiation elvesl of Rajasthan. Radiation Protect. Dosimetry 63(3), 207 216.
    • Rastogi, N. and Sarin, M. M. 2008. Atmospheric 210Pb and 7Be in ambient aerosols over low- and high-altitude sites in semiarid region: temporal variability and transport processes. J. Geophys. Res. 113(D11103). DOI: 10.1029/2007JD009298.
    • Rego, B. 2011. Radioactive smoke: a dangerous isotope lurks in cigarettes. Scientific American 78 81. http://www.scientificamerican. com/article.cfm?id=radioactive-smoke
    • Rengarajan, R., Sarin, M. M. and Sudheer, A. K. 2007. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J. Geophys. Res. 112, D21307. DOI: 10.1029/2006 JD008150.
    • Rolph, G. D. 2010. Real-time environmental applications and display system (READY). NOAA Air Resources Laboratory, Silver Spring, MD. Online at: http://ready.arl.noaa.gov
    • Sarin, M. M., Rengarajan, R. and Krishnaswami, S. 1999. Aerosol NO-3 and 210Pb distribution over the central-eastern Arabian Sea and their air-sea deposition fluxes. Tellus 51(2), 749 758.
    • Sayed, A. M., Al-Azmi, D. and Khuraibet, N. A. 2002. Measurements of 210Pb concentrations in airborne in Kuwait. Environ. Monitor. Assess. 79(1), 47 55.
    • Singh, S., Mehra, R. and Singh, K. 2005. Seasonalvariation of indoor radon in dwellings of Malwa region, Punjab. Atmos. Environ. 39, 7761 7767.
    • Singh, S., Singh, B. and Kumar, A. 2003. Natural radioactivity measurements in soil sampels from Hamirpur district, Himachal Pradesh, India. Radiat. Meas. 36, 547 549.
    • Turekian, K. K. and Graustein, W. C. 2003. Natural Radionuclides in the Atmosphere, Treatise on Geochemistry (eds. H. D. Holland, K. K. Turekian) Vol. 4, Elsevier-Pergamon, Oxford, pp. 261 79.
    • Vasconcellos, L. M. H., Amaral, E. C. S., Vianna, M. E. and Penna Franca, E. 1987. Uptake of 226Ra and 210Pb by food crops cultivated in a region of high natural radioactivity in Brazil. J. Environ. Radioact. 5(4), 287 302.
    • Wilkening, M. H. and Clements, W. E. 1975. Radon 222 from the ocean surface. J. Geophys. Res. 80(27), 3828 3830.
    • Yi, Y., Zhou, P. and Liu, G. 2007. Atmospheric deposition fluxes of 7Be, 210Pb and 210Po at Xiamen, China. J. Radioanal. Nucl. Chem. 273(1), 157 162.
    • Zahorowski, W., Chambers, S., Wang, T., Kang, C.-H., Uno, I. and co-authors. 2005. Radon-222 in boundary layer and free tropospheric continentaloutflow events at three ACE-Asia sites. Tellus-B 57(2), 124 140.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article