Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Francisco Navas-Guzmán; Juan Antonio Bravo-Aranda; Juan Luis Guerrero-Rascado; María José Granados-Muñoz; Lucas Alados-Arboledas (2013)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, vertical profiles, aerosol optical properties, PBL and free troposphere, Vertical properties; Raman lidar; Statistical Analysis, statistical analysis, aerosol science; remote sensing; atmospheric physics, Raman lidar
In this work, a statistical study of aerosol optical properties retrieved from Raman lidar profiles has been addressed at the EARLINET station of Granada, Spain, during the period 2008–2010. Lidar measurements were performed during day- and night-time. Mean values and variances of the aerosol extinction and backscatter coefficient profiles in the troposphere have been computed. These profiles evidenced that during autumn–winter, most of the particles are confined to the first kilometres above the surface (below 3500 m above sea level), while a major presence of aerosol at higher altitudes is observed during spring–summer. Moreover, a study of the planetary boundary layer (PBL) height and aerosol stratification has been performed for the whole studied period. Monthly mean β-related Angström exponent values have been obtained for aerosols in the PBL and in the free troposphere. Furthermore, monthly mean lidar ratio values at 532 nm have been retrieved from Raman profiles during night-time. A detailed study of these intensive properties has allowed characterizing the aerosol present over our station. The results evidenced a predominance of large and scattering particles during spring and summer and an increase of small and absorbing particles during autumn and winter.Keywords: aerosol optical properties, Raman lidar, statistical analysis, vertical profiles, PBL and free troposphere(Published: 22 October 2013)Citation: Tellus B 2013, 65, 21234, http://dx.doi.org/10.3402/tellusb.v65i0.21234
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackermann, J. 1998. The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study. J. Atmos. Ocean. Tech. 15, 1043 1050.
    • Alados-Arboledas, L., Lyamani, H. and Olmo, F. J. 2003. Aerosol size properties at Armilla, Granada (Spain). Q. J. Roy. Meteorol. Soc. 129, 1395 1413.
    • Alados-Arboledas, L., Mu¨ ller, D., Guerrero-Rascado, J. L., Navas-Guzman, F., Perez-Ramirez, D. and co-authors. 2011. Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry. Geophys. Res. Lett. 38, 1 5.
    • Amiridis, V., Balis, D. S., Kazadzis, S., Bais, A., Giannakaki, E. and co-authors. 2005. Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res. 110, D21203. DOI: 10.1029/2005JD006190.
    • Ansmann, A., Bosenberg, J., Chaikovsky, A., Comeron, A., Eckhardt, S. and co-authors. 2003. Long-range transport of Saharan dust to northern Europe: The 11 16 October 2001 outbreak observed with EARLINET. J. Geophys. Res. Atmos. 108, D24, 4783, 1 5.
    • Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E. and co-authors. 1992. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl. Phys. B Photophys. Laser Chem. 55, 18 28.
    • Baars, H., Ansmann, A., Engelmann, R. and Althausen, D. 2008. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys. 8, 7281 7296.
    • Co´ rdoba-Jabonero, C., Sorribas, M., Guerrero-Rascado, J. L., Adame, J. A., Hernandez, Y. and co-authors. 2011. Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula. Atmos. Chem. Phys. 11, 3067 3091.
    • Draxler, R. R. and Rolph, G. D. 2003. http://www.arl.noaa.gov/ ready/hysplit4.html. Silver Spring, MD.
    • Fernald, F. G. 1984. Analysis of atmospheric lidar observations some comments. Appl. Optic. 23, 652 653.
    • Foster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and co-authors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis and co-authors.). Cambridge University Press, Cambridge, UK, 129 234.
    • Franke, K., Ansmann, A., Muller, D., Althausen, D., Venkataraman, C. and co-authors. 2003. Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean. J. Geophys. Res. Atmos. 108, D2, 4059, 1 17.
    • Giannakaki, E., Balis, D. S., Amiridis, V. and Zerefos, C. 2010. Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece. Atmos. Meas. Tech. 3, 569 578.
    • Granados-Mun˜ oz, M. J., Navas-Guzma´ n, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H. and co-authors. 2012. Automatic determination of the planetary boundary layer height using lidar: one-year analysis over southeastern Spain. J. Geophys. Res. Atmos. 117, D18208, 1 10.
    • Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M. and co-authors. 2011. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B. 63(4), 706 724.
    • Guerrero-Rascado, J. L., Olmo, F. J., Aviles-Rodriguez, I., NavasGuzman, F., Perez-Ramirez, D. and co-authors. 2009. Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite. Atmos. Chem. Phys. 9, 8453 8469.
    • Guerrero-Rascado, J. L., Ruiz, B. and Alados-Arboledas, L. 2008. Multi-spectral lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmos. Environ. 42, 2668 2681.
    • Kaufman, Y. J., Tanre´ , D. and Boucher, O. 2002. A satellite view of aerosols in the climate system. Nature. 419, 215 223.
    • Klett, J. D. 1981. Stable analytical inversion solution for processing lidar returns. Appl. Optic. 20, 211 220.
    • Landulfo, E., Papayannis, A., Artaxo, P., Castanho, A. D. A., de Freitas, A. Z. and co-authors. 2003. Synergetic measurements of aerosols over Sao Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season. Atmos. Chem. Phys. 3, 1523 1539.
    • Lyamani, H., Olmo, F. J. and Alados-Arboledas, L. 2010. Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability. Atmos. Chem. Phys. 10, 239 254.
    • Lyamani, H., Olmo, F. J., Alcantara, A. and Alados-Arboledas, L. 2006a. Atmospheric aerosols during the 2003 heat wave in southeastern Spain II: microphysical columnar properties and radiative forcing. Atmos. Environ. 40, 6465 6476.
    • Lyamani, H., Olmo, F. J., Alcantara, A. and Alados-Arboledas, L. 2006b. Atmospheric aerosols during the 2003 heat wave in southeastern Spain I: spectral optical depth. Atmos. Environ. 40, 6453 6464.
    • Marenco, F., Santacesaria, V., Bais, A. F., Balis, U., di Sarra, A. and co-authors. 1997. Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (photochemical activity and solar ultraviolet radiation campaign). Appl. Optic. 36, 6875 6886.
    • Matthias, V. and Bosenberg, J. 2002. Aerosol climatology for the planetary boundary layer derived from regular lidar measurements. Atmos. Res. 63, 221 245.
    • Mattis, I., Ansmann, A., Muller, D., Wandinger, U. and Althausen, D. 2004. Multiyear aerosol observations with dualwavelength Raman lidar in the framework of EARLINET. J. Geophys. Res. Atmos. 109, D13203, 1 15.
    • Mona, L., Amodeo, A., Pandolfi, M. and Pappalardo, G. 2006. Saharan dust intrusions in the Mediterranean area: three years of Raman lidar measurements. J. Geophys. Res. Atmos. 111, D16203, 1 13.
    • Morille, Y., Haeffelin, M., Drobinski, P. and Pelon, J. 2007. STRAT: an automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Ocean. Tech. 24, 761 775.
    • Mu¨ ller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U. and co-authors. 2007a. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. Atmos. 112, D16202, 1 11.
    • Mu¨ ller, D., Franke, K., Ansmann, A., Althausen, D. and Wagner, F. 2003. Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations. J. Geophys. Res. Atmos. 108, D19, 4600, 1 15.
    • Mu¨ ller, D., Mattis, I., Ansmann, A., Wandinger, U., Ritter, C. and co-authors. 2007b. Multiwavelength Raman lidar observations of particle growth during long-range transport of forestfire smoke in the free troposphere. Geophys. Res. Lett. 34, 1 4.
    • Mu¨ ller, D., Weinzierl, B., Petzold, A., Kandler, K., Ansmann, A. and co-authors. 2010. Mineral dust observed with AERONET sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: shape-independent particle properties. J. Geophys. Res. Atmos. 115, D07202, 1 18.
    • Navas-Guzm a´n, F., Guerrero Rascado, J. L. and Alados Arboledas, L. 2011a. Retrieval of the lidar overlap function using Raman signals. O´ pt. Pura y Apl. 44, 71 75.
    • Navas-Guzma´ n, F., Guerrero-Rascado, J. L., Bravo-Aranda, J. A. and Alados-Arboledas, L. 2011b. Calibration of 1064 nmbackscatter profiles with a multiwavelength Raman lidar. Rom. J. Phys. 56, 460 466.
    • Noh, Y. M., Kim, Y. J. and Mu¨ ller, D. 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn. Atmos. Environ. 42, 2208 2224.
    • Papayannis, A., Amiridis, V., Mona, L., Tsaknakis, G., Balis, D. and co-authors. 2008. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000 2002). J. Geophys. Res. Atmos. 113, D10204, 1 17.
    • Pappalardo, G., Wandinger, U., Mona, L., Hiebsch, A., Mattis, I. and co-authors. 2010. EARLINET correlative measurements for CALIPSO: first intercomparison results. J. Geophys. Res. 115, D00H19. DOI: 10.1029/2009JD012147.
    • Perez-Ramirez, D., Lyamani, H., Olmo, F. J., Whiteman, D. N. and Alados-Arboledas, L. 2012. Columnar aerosol properties from sun-and-star photometry: statistical comparisons and dayto-night dynamic. Atmos. Chem. Phys. 12, 9719 9738.
    • Pilinis, C., Pandis, S. N. and Seinfeld, J. H. 1995. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res. 100, 18739 18754.
    • Preißler, J., Wagner, F., Guerrero Rascado, J. L. and Silva, A. M. 2013. Two years of free-tropospheric aerosol layers observed over Portugal by lidar. J. Geophys. Res. 118, 3676 3686. DOI: 10.1002/jgrd.50350.
    • Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D. 2001. Atmosphere: aerosols, climate, and the hydrological cycle. Science. 294, 2119 2124.
    • Rodrı´ guez, S., Alastuey, A., Alonso-Pe´ rez, S., Querol, X., Cuevas, E. and co-authors. 2011. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos. Chem. Phys. 11, 6663 6685.
    • Sasano, Y. and Nakane, H. 1984. Significance of the extinction backscatter ratio and the boundary-value term in the solution for the 2-component lidar equation. Appl. Optic. 23, 11 13.
    • Sicard, M., Rocadenbosch, F., Reba, M. N. M., Comeron, A., Tomas, S. and co-authors. 2011. Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain. Atmos. Chem. Phys. 11, 175 190.
    • Spinhirne, J. D., Palm, S. P., Hart, W. D., Hlavka, D. L. and Welton, E. J. 2005. Cloud and aerosol measurements from GLAS: overview an initial results. Geo. Res. Lett. 32, 1 5.
    • Titos, G., Foyo-Moreno, I., Lyamani, H., Querol, X., Alastuey, A. and co-authors. 2012. Optical properties and chemical composition of aerosol particles at an urban location: an estimation of the aerosol mass scattering and absorption efficiencies. J. Geophys. Res. Atmos. 117, D04206, 1 12.
    • Valenzuela, A., Olmo, F. J., Lyamani, H., Anton, M., Quirantes, A. and co-authors. 2012a. Aerosol radiative forcing during African desert dust events (2005 2010) over Southeastern Spain. Atmos. Chem. Phys. 12, 10331 10351.
    • Valenzuela, A., Olmo, F. J., Lyamani, H., Anton, M., Quirantes, A. and co-authors. 2012b. Classification of aerosol radiative properties during African desert dust intrusions over southeastern Spain by sector origins and cluster analysis. J. Geophys. Res. Atmos. 117, D06214, 1 18.
    • Wandinger, U. and Ansmann, A. 2002. Experimental determination of the lidar overlap profile with Raman lidar. Appl. Optic. 41, 511 514.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article