LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tunved, P.; Korhonen, H.; Ström, J.; Hansson, H. -C.; Lehtinen, K. E.J.; Kulmala, M. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Using a pseudo-Lagrangian approach, changes in aerosol size distribution was investigated during southerly transport under clear sky conditions from Finnish Lapland to Hyytiälä. Seventy-nine individual transport cases were considered. The mean transport distance was 700 km and mean transport time 66 h. On average, a sevenfold increase in Aitken mode number concentration could be observed. An increase in number concentration was observed in virtually all the cases. Several of the studied cases were associated with indications of nucleation at the receptor site. Six of the cases were simulated in detail utilizing a box-model approach. Aerosol dynamics was evaluated using the University of Helsinki Multi-component Aerosol model. Particle formation was assumed to be controlled by a kinetic nucleation mechanism. Growth of particles was suggested to be controlled by, except water and ammonia, sulphuric acid, and some unknown species with saturation vapour pressure of 3 × 106 cm−3. This product was supposed to derive from terpene oxidation by hydroxyl radical, ozone, and nitrate radical.The investigation strongly suggests nucleation events occurring over large scales to be responsible for the observed number increase during transport under modelled conditions.Using a simplified two layer structure of the lowermost troposphere, we highlight the role of vertical exchange. Modelled growth rates were found to be in agreement with observational data, in the order of 1–2 nm h–1. In order to reproduce the observed growth rates, a molar yield of condensable products from terpene oxidation of 10% was required. Concentration of sulphuric acid and condensable organic vapours were on average 3 × 106 and 1.5 × 107 cm−3, respectively.DOI: 10.1111/j.1600-0889.2006.00176.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Boy, M., Petaja, T., Dal Maso, M., Rannik, U., Rinne, J. and co-authors. 2004. Overview of the field measurement campaign in Hyytia¨la¨, August 2001 in the framework of the EU project OSOA. Atmos. Chem. Phys. 4, 657-678.
    • Boy, M., Rannik, U., Lehtinen, K. E. J., Tarvainen, V. and co-authors. 2003. Nucleation events in the continental boundary layer: long-term statistical analyses of aerosol relevant characteristics. J. Geophys. Res. 108, 4667, doi:10.1029/2003JD003838.
    • Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B. and Warren, S. G. 1991. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43B, 152-163.
    • Derwent, R. G. and Jenkin, M. E. 1990. Hydrocarbon involvement in photochemical ozone formation in Europe. AERE Report R13736 (HMSO), London.
    • Draxler, R. R. and Hess, G. D. 1997. Description of the Hysplit 4 modelling system., NOAA Tech Memo, ERL, ARL-224.
    • Draxler, R. R. and Rolph, G. D. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
    • Hakola, H., Tarvainen, V., Laurila, T., Hiltunen, V., Hellen, H. and coauthors. 2003. Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos. Environ. 37, 1623-1634.
    • Janson, R., Rosman, K., Karlsson, A. and Hansson, H. C. 2001. Biogenic emissions and gaseous precursors to forest aerosols. Tellus 53B, 423- 440.
    • Komppula, M., Dal Maso, M., Lihavainen, H., Aalto, P. P., Kulmala, M. and co-authors. 2003. Comparison of new particle formation events at two locations in northern Finland. Bor. Environ. Res. 8, 395-404.
    • Korhonen, H., Lehtinen, K. E. J. and Kulmala, M. 2004. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos. Chem. Phys. 4, 757-771.
    • Kulmala, M., Ha¨meri, K., Aalto, P. P., Ma¨kela¨, J. M., Pirjola, L., and co-authors 2001. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus 53B, 324- 343.
    • Kulmala, M., Kerminen, V. M., Anttila, T., Laaksonen, A. and O'Dowd, C. D. 2004b. Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 109, Art. No. D04205.
    • Kulmala, M., Pirjola, U. and Ma¨kela¨, J. M. 2000a. Stable sulphate clusters as a source of new atmospheric particles. Nature 404, 66- 69.
    • Kulmala, M., Rannik, U¨ ., Pirjola, L., Dal Maso, M., Karima¨ki, J. and co-authors 2000b. Characterization of atmospheric trace gases and aerosol composition at forest sites in southern and northern Finland using back trajectories. Bor. Environ. Res. 5, 315-336.
    • Kulmala, M., Toivonen, A., Ma¨kelea¨, J. M. and Laaksonen, A. 1998. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus 50B, 449-462.
    • Kulmala, M., Vehkama¨ki, H., Petajda, T., Dal Maso, M., Lauri, A. and co-authors 2004a. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol. Sci. 35, 143-176.
    • Laakso, L., Hussein, T., Aarnio, P., Komppula, M., Hiltunen, V. and Kulmala, M. 2003. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos. Environ. 37, 2629-2641.
    • Laakso, L., Peta¨ja¨, T., Lehtinen, K. E. J., Kulmala, M., Paatero, J. and 2004. Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmos. Chem. Phys. Discuss. 4, 3947- 3973.
    • Laurila, T. and Lindfors, V. (eds.), 1999. Brogenic VOC emissions and photochemistry in the boreal regions of Europe. Air Pollution Research Report No. 70, Commission of the European Communities, Luxembourg, 158 pp. ISBN 92-828-6990-3.
    • Lindfors, V., Laurila, T., Harola, H., Steinbrecher, R. and Rinne, J. 2000. Modelling speciated terpenoid emissions from the European Boreal forest. Atmos. Environ. 34, 4983-4996.
    • Ma¨kela¨, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A. and coauthors 1997. Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett. 24, 1219-1222.
    • Ma¨kela¨, J. M., Dal Maso, M., Pirjola, L., Keronen, P., Laakso, L. and coauthors 2000. Characteristics of the aerosol particle formation events observed at a boreal forest site in southern Finland. Boreal Environ. Res. 4, 299-313.
    • Nilsson, E. D., Paatero, J. and Boy, M. 2001b. Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus 53B, 462-478.
    • Nilsson, E. D., Rannik, U., Kulmala, M., Buzorius, G. and O'Dowd, C. D. 2001a. Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus 53B, 441- 461.
    • O'Dowd, C. D., Aalto, P., Hameri, K., Kulmala, M. and Hoffmann, T. 2002. Aerosol formation - atmospheric particles from organic vapours. Nature 416, 497-498.
    • Rannik, U., Aalto, P., Keronen, P., Vesala, T. and Kulmala, M. 2003. Interpretation of aerosol particle fluxes over a pine forest: dry deposition and random errors. J. Geophys. Res. 108, 4544, doi: 10.1029/2003JD003542.
    • Slinn, W. G. N. 1978. Parameterizations for resuspension and for wet and dry deposition of particles and gases for use in radiation dose calculations. Nucl. Saf. 19, 205-219.
    • Spanke, J., Rannik, U., Forkel, R., Nigge, W. and Hoffmann, T. 2001. Emission fluxes and atmospheric degradation of monoterpenes above a boreal forest: field measurements and modelling. Tellus 53B, 406- 422.
    • Tunved, P., Hansson, H. C., Kulmala, M., Aalto, P., Viisanen, Y. and co-authors 2003. One year boundary layer aerosol size distribution data from five Nordic background stations. Atmos. Chem. Phys. 3, 2183-2205.
    • Tunved, P., Korhonen, H., Stro¨m, J., Hansson, H.-C., Lehtinen, K. E. J. and co-authors 2004. A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Va¨rrio¨. Atm. Chem. Phys. Discuss. 4, 7757-7794.
    • Twomey, S. A. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251-1256.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from