LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Durkee, P. A.; Nielsen, K. E.; Smith, P. J.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Holben, B. N.; Tomasi, C.; Vitale, V.; Collins, D.; Flagan, R. C.; Seinfeld, J. H.; Noone, K. J.; Öström, E.; Gassó, S.; Hegg, D.; Russell, L. M.; Bates, T. S.; Quinn, P. K. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Analysis of the aerosol properties during 3 recent international field campaigns (ACE-1, TARFOX and ACE-2) are described using satellite retrievals from NOAA AVHRR data. Validation of the satellite retrieval procedure is performed with airborne, shipboard, and land-based sunphotometry during ACE-2. The intercomparison between satellite and surface optical depths has a correlation coefficient of 0.93 for 630 nm wavelength and 0.92 for 860 nm wavelength. The standard error of estimate is 0.025 for 630 nm wavelength and 0.023 for 860 nm wavelength. Regional aerosol properties are examined in composite analysis of aerosol optical properties from the ACE-1, TARFOX and ACE-2 regions. ACE-1 and ACE-2 regions have strong modes in the distribution of optical depth around 0.1, but the ACE-2 tails toward higher values yielding an average of 0.16 consistent with pollution and dust aerosol intrusions. The TARFOX region has a noticeable mode of 0.2, but has significant spread of aerosol optical depth values consistent with the varied continental aerosol constituents off the eastern North American Coast.DOI: 10.1034/j.1600-0889.2000.00040.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bates, T. S., Huebert, B. J., Gras, J. L., GriYths, F. B. and Durkee, P. A. 1998. International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE 1): Overview. J. Geophys. Res. 103, 16297-16318.
    • Brown, B. B. 1997. Remote measurement of aerosol optical properties using the NOAA POES AV HRR and GOES imager during TARFOX. MS thesis, Naval Postgraduate School, Monterey, CA, 73 pp.
    • Charlson, R. J., Swartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. R. Jr., Hansen, J. E. and HoVman, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
    • Cox, C. and Munk, W. 1954. Measurements of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Am. 44, 838-850.
    • Dalu, G. 1986. Satellite remote sensing of atmospheric water vapor. Int. J. Rem. Sen. 7, 1089-1097.
    • Durkee, P. A., Pfeil, F., Frost, E. and Shema, R. 1991. Global analysis of aerosol particle characteristics. Atmos. Env. 25A, 2457-2471.
    • Elterman, L. 1970. Vertical-attenuation model with eight surface meteorological ranges 2 to 13 km. AFCRL-70- 0200 Air Force Cambridge Research Laboratory, Cambridge, MA, 56 pp.
    • Gordon, H. R. and Clark, D. K. 1980. Atmospheric eVects in the remote sensing of phytoplankton pigments. Boundary L ayer Met. 18, 299-313.
    • Hainsworth, A. H. W., Dick, A. L. and Gras, J. L. 1998. Climatic context of the First Aerosol Characterization Experiment ACE (1): A meteorological and chemical overview. J. Geophys. Res. 103, 16319-16340.
    • Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A. 1998. AERONET-A federated instument network and data archive for aerosol characterization. Rem. Sen. Env. 66, 1-16.
    • Husar, R., Prospero, J. and Stowe, L. L. 1997. Characterization of tropospheric aerosols over the oceans with the NOAA/AVHRR optical thickness operational product. J. Geophys. Res. 102, 16,889-16,910.
    • Intergovernmental Panel on Climate Change (IPCC) 1996. Climate Change 1995, J. T. Houghton et al. (eds.). Cambridge University Press, New York.
    • IGAC 1995. International global atmospheric chemistry project, north Atlantic Aerosol Characterization Experiment (ACE-2). Radiative forcing due to anthropogenic aerosols over the north Atlantic region. Science and implementation plan. European Commission DG XIII, Report No. CL-NA-16229-EN-C. 112 pp.
    • Ignatov, A. M., Stowe, L. L., Sakerin, S. M. and Korataev, G. K. 1995. Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989. J. Geophys. Res. 100, 5123-5132.
    • Kidwell, K. B. 1995. NOAA Polar orbiter data users guide. National Environmental Satellite, Data, and Information Service (NESDIS), National Oceanic and Atmospheric Administration, 394 pp.
    • Kiehl, J. T. and Briegleb, B. P. 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
    • Koepke, P. 1984. EVective reflectance of ocean whitecaps. Appl. Opt. 23, 1816-1824.
    • Livingston, J. M. and Russell, P. B. 1997. Aerosol optical depth spectra, vertical profiles, and horizontal transects derived from TARFOX airborne sunphotometer measurements, EOS. T rans. Amer. Geophys. Union 78, S92.
    • Livingston, J. M., Kapustin, V., Schmid, B. Russell, P. B., Durkee, P. A., Bates, T. S., Quinn, P. K., Smith, P. J., Freudenthaler, V., Covert, D. S., Gass o´, S., Hegg, D., Collins, D. R., Flagan, R. C., Seinfeld, J. H., Vitale, V. and Tomasi, C. 2000. Shipboard sunphotometer measurements of aerosol optical depth spectra and water vapor during ACE-2 and comparison with selected land, ship, aircraft, and satellite measurements. T ellus 52B, 494-619.
    • Mahony, T. P. 1991. Water vapor influence on satellitemeasured aerosol characteristics. MS thesis. Naval Postgraduate School, Monterey, CA, 43 pp.
    • Matsumoto, Y., Mina, C., Russell, P. B. and Vanark, W. B. 1987. Airborne tracking sunphotometer apparatus and system. NASA Technical Report 1988005110 N (88N14492). NASA Ames Research Center, MoVett Field, CA, 10 pp.
    • Nakajima, T. and Higurashi, A. 1998. A use of twochannel radiances for aerosol characterization from space. Geophys. Res. L et. 25, 3815-3818.
    • Ramsey, R. C. 1968. Study of the remote measurement of ocean color. Final Report, TRW, NASW-1658, 94 pp.
    • Rao, C. R. N. and Chen, J. 1995. Inter-satellite calibration linkages for the visible channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11. Int. J. Rem. Sen. 16, 1931-1942.
    • Rouault, M. and Durkee, P. A. 1992. Characterization of aerosols from satellite remote sensing. In: Nucleation and atmospheric aerosols, pp. 357-360, N. Fukuta and P. E. Wagoner (eds.). A. Deepak Publishing.
    • Russell, P. B., Whiting, W., Hobbs, P. V. and Stowe, L. L. 1996. T ropopsheric aerosol radiative forcing observational experiment (TARFOX) science and implementation plan. NASA Ames Research Center, MoVett Field, CA, 50 pp.
    • Russell, P. B., Livingston, J. M., Schmid, B., Chien, A., Gasso, S., Hegg, D. A., Noone, K. J., Collins, D., Jonsson, H., Nielsen, K. E., Durkee, P. A., Flagan, R. C., Seinfeld, J. H., Bates, T. S. and Quinn, P. K. 1998. Clear column closure studies of urban-marine and mineral-dust aerosols using aircraft, ship, and satellite measurements in ACE 2. J. Aerosol Sci. 29, S1143-S1144.
    • Russell, P. B. and Heintzenberg, J. 2000. An overview of the ACE 2 clear sky column closure experiment (CLEARCOLUMN). T ellus 52B, 463-483.
    • Saunders, R. W. and Kriebel, K. T. 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Rem. Sen. 9, 123-150.
    • Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Collins, D. R., Flagan, R . C., Seinfeld, J. H., Gasso, S., Hegg, D. A., Ostrom, E., Noone, K. J., Welton, E. J., Voss, K., Gordon, H. R., Formenti, P. and Andreae, M., O. 2000. Clear sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground based measurements. T ellus 52B, 568-593.
    • Swartz, S. E. and Andeae, M. O. 1996. Uncertainty in climate change by aerosols. Science 272, 1121-1122.
    • Turner, R. 1973. Atmospheric eVects in remote sensing. In: Remote sensing of the earth's resources (II), pp. 549-583, F. Shahrocki (ed.). University of Tennessee.
    • Vitale, V., Tomasi, C., Bonafe´, U., Marani, S., Lupi, A., Cacciari, A. and Ruggeri, P. 2000. Spectral measurements of aerosol particle extinction in the 0.4-3.7 micrometer wavelength range, performed at Sagres with the IR-RAD sunradiometer. T ellus 52B, 716-733.
    • Whiting, W., Russell, P. B., Hobbs, P. V. and Stowe, L. L. 1996. T ropospheric aerosol radiative forcing observational experiment (TARFOX) operations summary. International Global Atmospheric Chemistry Project (IGAC), 127 pp.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from