LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lorenz, Edward N. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The available potential energy of the atmosphere may be defined as the difference between the total potential energy and the minimum total potential energy which could result from any adiabatic redistribution of mass. It vanishes if the density stratification is horizontal and statically stable everywhere, and is positive otherwise. It is measured approximately by a weighted vertical average of the horizontal variance of temperature. In magnitude it is generally about ten times the total kinetic energy, but less than one per cent of the total potential energy. Under adiabatic flow the sum of the available potential energy and the kinetic energy is conserved, but large increases in available potential energy are usually accompanied by increases in kinetic energy, and therefore involve nonadiabatic effects. Available potential energy may be partitioned into zonal and eddy energy by an analysis of variance of the temperature field. The zonal form may be converted into the eddy form by an eddy-transport of sensible heat toward colder latitudes, while each form may be converted into the corresponding form of kinetic energy. The general circulation is characterized by a conversion of zonal available potential energy, which is generated by low-latitude heating and high-latitude cooling, to eddy available potential energy, to eddy kinetic energy, to zonal kinetic energy.DOI: 10.1111/j.2153-3490.1955.tb01148.x
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from