Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karstensen, Johannes; Lorbacher, Katja (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
The buoyancy flux at the air/sea interface plays a key role in water mass transformation and mixing as it modifies surface water density and in turn drives overturning and enhances stratification. It is the interplay of these two independent heat and freshwater buoyancy flux components that is of central importance when analysing mechanisms of the ocean/atmosphere interaction. Here, a diagnostic quantity (ΘB) is presented that allows to capture the relative contribution of both components on the buoyancy flux in one single quantity. Using NCEP reanalysis of heat and freshwater fluxes (1948–2009) demonstrates that ΘB is a convenient tool to analyse both the temporal and spatial variability of their corresponding buoyancy fluxes. For the global ocean the areal extent of buoyancy gain and loss regions changed by 10%, with the largest extent of buoyancy gain during the 1970–1990 period. In the subpolar North Atlantic, and likewise in the South Pacific, decadal variability in freshwater flux is pronounced and, for the latter region, takes control over the total buoyancy flux since the 1980s. Some of the areal extent time series show a significant correlation with large-scale climate indices.DOI: 10.1111/j.1600-0870.2011.00510.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Badin, G. and Williams, R. 2010. On the buoyancy forcing and residual circulation in the Southern Ocean: the feedback from Ekman and eddy transfer. J. Phys. Oceanogr. 40, 295-310.
    • Badin, G., Williams, R. and Sharples, J. 2010. Water mass transformation in shef seas. J. Mar. Res. 68, 189-214.
    • Baines, P. and Folland, C. 2007. Evidence for a rapid global climate shift across the late 1960s. J. Clim. 20, 2721-2744.
    • Boening, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. and Schwarzkopf, F. U. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1(12), 864-869.
    • Curry, R. and Mauritzen, C. 2005. Dilution of the northern North Atlantic in recent decades. Science 308, 1772-1774.
    • Emery, W. J. and Meincke, J. 1986. Global water masses: summary and review. Oceanol. Acta 9(4), 383-391.
    • Fairbanks, R. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deepocean circulation. Nature 342, 637-642.
    • Garrett, C., Speer, K. and Tragou, E. 1995. The relationship between water mass formation and the surface bouyancy flux, with application to phillips' red sea model. J. Phys. Oceanogr. 25, 1696-1705.
    • Hanawa, K. and Talley, L. D. 2001. Mode Waters. In: Ocean Circulation and Climate (eds Siedler, G., Church, J. A. and Gould, J.). Academic Press, San Diego, CA, 373-386.
    • Hurrell, J. W. and Deser, C. 2009. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Mar. Res. 78(1), 28-41.
    • Josey, S. and Marsh, R. 2005. Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res. 110(C05008), doi:10.1029/2004JC002521.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437-470.
    • Large, W. G. and Nurser, A. J. G. 2001. International Geophysics Series, chapter Ocean Surface Water Mass Transformation. Academic Press. 317-336.
    • Levitus, S., Burgett, R. and Boyer, T. 1994. World Ocean Atlas, Vol. 3, Salinity, Technical report, NOAA Atlas NESDIS 3, U.S. Gov. Printing Office, Washington, DC.
    • Mamayev, O. I. 1975. Temperature-Salinity analzysis of World Ocean Waters. (ed. Mamayev, O. I.). Elsevier, 374 pp.
    • Marshall, D. 1997. Subduction of water masses into an eddying ocean. J. Mar. Res. 55, 201-222.
    • Marshall, G. 2003. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134-4143.
    • McCartney, M. S. 1977. Vol. 24 (Suppl.)), M. Angel, Pergamon Press, Oxford, U.K., chapter Subantarctic Mode Water, pp. 103-119.
    • McCartney, M. S. 1982. The subtropical recirculation of Mode Waters. J. Mar. Res. 40(Suppl.), 427-464.
    • Meehl, G., Hu, A. and Santer, B. 2009. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Clim. 22, 780-792.
    • Nurser, A. J. G., Marsh, R. and Williams, R. 1999. Diagnosing formation rates of water masses from air-sea fluxes and surface mixing. J. Phys. Oceanogr. 29, 1468-1487.
    • Reverdin, G., Durand, F., Mortensen, J., Schott, F., Valdimarsson, H. and co-authors. 2002. Recent changes in the surface salinity of the North Atlantic subpolar gyre. J. Geophys. Res. 107(C12)(8010), doi:10.1029/2001JC001010.
    • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. and Wang, W. 2002. An Improved In Situ and Satellite SST Analysis for Climate. J. Clim. 15, 1609-1625.
    • Schmitt, R. W., Bogden, P. S. and Dorman, C. E. 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr. 19, 1208-1221.
    • Shaffer, G., Leth, O., Ulloa, O., Bendtsen, J., Daneri, G. and co-authors. 2000. Warming and circulation changes in the eastern South Pacific Ocean. Geophys. Res. Let. 27, 1247-1250.
    • Smith, T., Reynolds, R. and Peterson, T. 2008. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880- 2006). J. Clim. 21, 2283-2296.
    • Speer, K. 1997. A note on average cross-isopycnal mixing in the North Atlantic Ocean. Deep-Sea Res. 44(12), 1981- 1990.
    • Speer, K. G., Isemer, H.-J. and Biastoch, A. 1995. Water mass formation from revised COADS data. J. Phys. Oceanogr. 25, 2444- 2457.
    • Speer, K., Rintoul, S. R. and Sloyan, B. M. 2000. The diabatic Deacon Cell. J. Phys. Oceanogr. 30(12), 3212-3222.
    • Sverdrup, H. U., Johnson, M. W. and Fleming, R. H. 1942. The Oceans: There Physics, Chemistry, and General Biology (eds. Sverdrup, H. U., Johnson, M. W. and Fleming, R. H.). Prentice-Hall, Englewood Cliffs, NJ, USA.
    • Tomczak, M. and Godfrey, S. 1994. Regional Oceanography: An Introduction. (eds Tomczak, M. and Godfrey, S.) Pergamon Press, Oxford, UK.
    • Tziperman, E. 1986. On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr. 16, 680-693.
    • Vellinga, M. and Wood, R. A. 2002. Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim. Change 54(3), 251- 267.
    • Walin, G. 1982. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34, 187- 194.
    • Wong, A. P. S., Bindoff, N. L. and Church, J. A. 1999. Large scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature 400, 440-443.
    • Zhang, H.-M. and Talley, L. D. 1998. Heat and buoyancy budgets and mixing rates in the upper thermocline of the Indian and global Oceans. J. Phys. Oceanogr. 28, 1961-1978.
    • Zhang, Y. Z., Wallace, J. M. and Battisti, D. S. 1997. ENSO-like interdecadal variability: 1900-1993. J. Climate 10, 1004-1020.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from