LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Russell, Philip B.; Heintzenberg, Jost (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
As 1 of 6 focused ACE-2 activities, a clear sky column closure experiment (CLEARCOLUMN) took place in June/July 1997 at the southwest corner of Portugal, in the Canary Islands, and over the eastern Atlantic Ocean surrounding and linking those sites. Overdetermined sets of volumetric, vertical profile and columnar aerosol data were taken from the sea surface to ∼5 km asl by samplers and sensors at land sites (20–3570 m asl), on a ship, and on 4 aircraft. In addition, 5 satellites measured upwelling radiances used to derive properties of the aerosol column. Measurements were made in a wide range of conditions and locations (e.g., the marine boundary layer with and without continental pollution, the free troposphere with and without African dust). Numerous tests of local and column closure, using unidisciplinary and multidisciplinary approaches, were conducted. This paper summarizes the methodological approach, the experiment sites and platforms, the types of measurements made on each, the types of analyses conducted, and selected key results, as a guide to the more complete results presented in other papers in this special issue and elsewhere. Example results include determinations of aerosol single scattering albedo by several techniques, measurements of hygroscopic effects on particle light scattering and size, and a wide range in the degree of agreement found in closure tests. In general, the smallest discrepancies were found in comparisons among (1) different techniques to measure an optical property of the ambient, unperturbed aerosol (e.g., optical depth, extinction, or backscatter by sunphotometer, lidar, and/or satellite) or (2) different techniques to measure an aerosol that had passed through a common sampling process (e.g., nephelometer and size spectrometer measurements with the same or similar inlets, humidities and temperatures). Typically, larger discrepancies were found between techniques that measure the ambient, unperturbed aerosol and those that must reconstruct the ambient aerosol by accounting for (a) processes that occur during sampling (e.g., aerodynamic selection, evaporation of water and other volatile material) or (b) calibrations that depend on aerosol characteristics (e.g., size-dependent density or refractive index). A primary reason for the discrepancies in such cases is the lack of validated hygroscopic growth models covering the necessary range of particle sizes and compositions. Other common reasons include (1) using analysis or retrieval techniques that assume aerosol properties (e.g., density, single scattering albedo, shape) that do not apply in all cases and (2) using surface measurements to estimate column properties. Taken together, the ACE-2 CLEARCOLUMN data set provides a large collection of new information on the properties of the aerosol over the northeast Atlantic Ocean. CLEARCOLUMN studies have also pointed to improved techniques for analyzing current and future data sets (including satellite data sets) which will provide a more accurate and comprehensive description of the Atlantic–European–African aerosol. Thus they set the stage for an improved regional quantification of radiative forcing by anthropogenic aerosols.DOI: 10.1034/j.1600-0889.2000.00013.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, T. L. and Ogren, J. A. 1998. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aer. Sci. T ech. 29, 57-69.
    • Bates, T., Quinn, P., Covert, D. S., CoVman, D. J. and Johnson, D. 2000. Aerosol properties and controlling processes in the lower marine boundary layer: a comparison of ACE-1 and ACE-2. T ellus 52B, 258-272.
    • Bergstrom, R. W. and Russell, P. B. 1999. Estimation of aerosol radiative eVects over the mid-latitude North Atlantic region from satellite and in situ measurements. Geophys. Res. L ett. 26, 1731-1734.
    • Bond, T. C., Anderson, T. L. and Campbell, D. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aer. Sci. T ech. 30, 582-600.
    • Brenguier, J.-L. et al. 2000. An overview of the ACE-2 CLOUDYCOLUMN closure experiment. T ellus 52B, 815-827.
    • Bugalho, M. L., Silva, A. M. and Von Hoyningen-Huene, W. 1998. Evaluation of spectral aerosol properties from sun-photometry and nephelometer measurements during ACE 2 CLEARCOLUMN. J. Aerosol Sci. 29, S263-S264.
    • Carrico, C. M., Rood, M. J., Ogren, J. A., Neus u¨ß, C., Wiedensohler, A. and Heintzenberg, J. 2000. Aerosol light scattering properties measured at Sagres, Portugal, during ACE-2. T ellus 52B, 694-715.
    • Clarke, A. D., Porter, J. N., Valero, F. P. J. and Pilewskie, P. 1966. Vertical profiles, aerosol microphysics, and optical column closure during the Atlantic stratocumulus transition experiment: measured and modeled column optical properties. J. Geophys. Res. 101, 4443-4453.
    • Collins, D. R., Jonsson, H. H., Seinfeld, J. H., Flagan, R. C., Gass o´, S., Hegg, D., Russell, P. B., Livingston, J. M., Schmid, B., O¨str o¨m, E., Noone, K. J. and Russell, L. M. 2000. In situ aerosol size distributions and clear column radiative closure during ACE-2. T ellus 52B, 498-525.
    • Covert, D. S., Charlson, R. J. and Ahlquist, N. C. 1972. A study of the relationship of chemical composition and humidity to light scattering by aerosols. J. App. Met. 11, 968-976.
    • Durkee, P. A., Nielsen, K. E., Russell, P. B., Schmid, B., Livingston, J. M., Collins, D., Flagan, R. C., Seinfeld, H. H., Noone, K. J., O¨str o¨m, E., Gass o´, S., Hegg, D., Bates, T. S., Quinn, P. K. and Russell, L. M. 2000. Regional aerosol properties from satellite observation: ACE-1, TARFOX and ACE-2 results. T ellus 52B, 484-497.
    • Eatough, D. J., Eatough, D. A. and Lewis, E. A. 1995. Fine particulate chemical composition and extinction apportionment at Canyonlands National Park using organic particulate material concentrations obtained with a multi-system, multichannel diVusion denuder sampler. J. Geophys. Res. 101, 19515.
    • Elias, T., Devaux, C., Goloub, P., Tanre´, D. and Herman, M. 2000. Polarising properties of the aerosols in the north-eastern tropical Atlantic Ocean, with emphasis on the ACE-2 period, T ellus 52B, 620-635.
    • Fitzgerald, J. W. and Hoppel, W. A. 1982. The size and scattering coeYcient of urban aerosol particles at Washington, DC as a function of relative humidity., J. Atmos. Sci. 39, 1838-1852.
    • Flamant, C., Pelon, J., Chazette, P., Trouillet, V., Bruneau, D., Quinn, P., Frouin, R., Bruneau, D., Leon, J. F., Bates, T. Johnson, J. and Livingston, J. 2000. Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2. T ellus 52B, 662-677.
    • Formenti, P., Andreae, M. O. and Lelieveld, J. 2000. Measurements of aerosol optical depth in the North Atlantic free troposphere: results from ACE-2. T ellus 52B, 678-693.
    • Gass o´, S., Hegg, D. A., Covert, D. S., Noone, K., O¨str o¨m, E., Schmid, B., Russell, P. B., Livingston, J. M., Durkee, P. A. and Jonsson, H. 2000. Influence of humidity on the aerosol scattering coeYcient and its eVect on the upwelling radiance during ACE-2. T ellus 52B, 546-567.
    • Halthore, R. N., Nemesure, S., Schwartz, S. E., Imre, D. G., Berk, A., Dutton, E. G. and Bergin, M. H. 1998. Models overestimate diVuse clear-sky surface irradiance: A case for excess atmospheric absorption. Geophys. Res. L ett. 25, 3591-3594.
    • Hansen, J. M., Sato, M. and Ruedy, R. 1997. Radiative forcing and climate response. J. Geophys. Res. 102, 6831-6864.
    • Hartley, W. S., Hobbs, P. V., Ross, J. L., Russell, P. B. and Livingston, J. M. 2000. Properties of aerosols aloft relevant to direct radiative forcing oV the mid-Atlantic coast of the United States. J. Geophys. Res., in press.
    • Haywood, J. M. and Shine, K. P. 1995. The eVect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. L ett. 22, 603-606.
    • Hegg, D. A., Covert, D. S., Rood, M. J. and Hobbs, P. V. 1996. Measurement of the aerosol optical properties in marine air. J. Geophys. Res. 96, 12883-12903.
    • Hegg, D. A., Livingston, J., Hobbs, P. V., Novakov, T. and Russell, P. B. 1997. Chemical apportionment of aerosol column optical depth oV the mid-Atlantic coast of the United States, J. Geophys. Res. 102, 25,293-25,303.
    • Heintzenberg, J., Charlson, R. J., Clarke, A. D., Liousse, C., Ramaswamy, V., Shine, K. P., Wendisch, M. and Helas, G. 1997. Measurements and modeling of aerosol single-scattering albedo: progress, problems, and prospects. Beitr. Phy. Atmosph. 70, 249-263.
    • Henning, S., Weise, D., Birmili, W., Wiedensohler, A. and Covert, D. S. 1998. The particle size distribution and total number concentration for diVerent air masses at the south-western edge of Europe. J. Aerosol Sci. 29, S273-S274.
    • Howell, S. G. and Huebert, B. J. 1998. Determining marine and aerosol scattering characteristics at ambient humidity from size-resolved chemical composition. J. Geophys. Res. 103, 1391-1404.
    • Johnson, D. et al. 2000. An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterization Experiment (ACE-2). T ellus 52B, 290-320.
    • Kotchenruther, R. A., Hobs, P. V. and Hegg, D. A. 1999. Humidification factors for atmospheric aerosol oV the mid-Atlantic coast of United States. J. Geophys. Res. 104, 2239-2251.
    • Livingston, J. M., Kapustin, V. N., Schmid, B., Russell, P. B., Quinn, P. K., Bates, T. S., Durkee, P. A. and Freudenthaler, V. 2000. Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2. T ellus 52B, 594-619.
    • Mishchenko, M. I., Travis, L. D., Kahn, R. A. and West, R. A. 1997. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. 102, 16831-16847.
    • Neus u¨ß, C., Weise, D., Birmili, W., Wiedensohler, A. and Covert, D. 2000. Size-segregated chemical, gravimetric and number distribution derived mass closure of the aerosol in Sagres, Portugal during ACE-2. T ellus 52B, 169-184.
    • Novakov, T., Bates, T. S. and Quinn, P. K. 2000. Shipboard measurements of the concentration and properties of carbon aerosols during ACE-2. T ellus 52B, 228-238.
    • Novakov, T., Hegg, D. A. and Hobbs, P. V. 1997. Airborne measurements of carbonaceous aerosols on the east coast of the United States, J. Geophys. Res. 102, 30,023-30,030.
    • O¨str o¨m, E. and Noone, K. J. 2000. Vertical profiles of aerosol scattering and absorption measured in situ during the North Atlantic Aerosol Characterization Experiment ACE-2. T ellus 52B, 526-545.
    • Philippin, S., Neus u¨ß, C., Wiedensohler, A., Heintzenberg, J., Carrico, C. M. and Rood, M. J. 1998. Optical properties of anthropogenically influenced aerosols in a marine atmosphere: an optical closure experiment. J. Aer. Sci. 29, S1151-S1152.
    • Powell, D. M., Reagan, J. A., Rubio, M. A., Erxleben, W. H. and Spinhirne. J. D. 2000. ACE-2 multiple angle micro-pulse lidar observations from Las Galletas, Tenerife, Canary Islands. T ellus 52B, 652-661.
    • Putaud, J. P., Van Dingenen, R., Mangoni, M., Virkkula, A., Raes, F. Maring, H., Prospero, J. M., Swietlicki, E., Berg, O. H., Hillamo, R. and Makela, T. 2000. Chemical mass closure and origin assessment of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. T ellus 52B, 141-168.
    • Quinn, P., CoVman, D. J., Bates, T. S. and Covert, D. S. 2000. Chemical and optical properties of ACE-2 aerosol. T ellus 52B, 239-257.
    • Quinn, P. K., Anderson, T. L., Bates, T. S., Dlugi, R., Heintzenberg, J., Hoyningen-Huene Von, W., Kulmala, M., Russell, P. B. and Swietlicki, E. 1996. Closure in tropospheric aerosol-climate research: a review and future needs for addressing aerosol direct shortwave radiative forcing. Contr. Atmos. Phys. 69, 547-577.
    • Raes, F., Bates, T., Mcgovern, F. and Van Liedekerke, M., 2000. The Second Aerosol Characterization Experiment (ACE-2): general overview and main results. T ellus 52B, 111-126.
    • Remer, L. A., Gass o´, S., Hegg, D. A., Kaufman, Y. J. and Holben, B. N. 1997. Urban/industrial aerosol: groundbased sun/sky radiometer and airborne in situ measurements. J. Geophys. Res. 102, 16,849-16,859.
    • Russell, P. B., Kinne, S. and Bergstrom, R. 1997. Aerosol climate eVects: local radiative forcing and column closure experiments. J. Geophys. Res. 102, 9397-9407.
    • Saxena, P., Hildemann, L. M., McMurry, P. H. and Seinfeld, J. H. 1995. Organics alter hygroscopic behavior of atmospheric particles. J. Geophys. Res. 100, 18,755-18,770.
    • Schmeling, M., Russell, L. M., Erlick, C., Collins, D., Flagan, R. C., Seinfeld, J. H., Jonsson, H., Wang, Q., Kregsamer, P. and Streli, C. 2000. Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2. T ellus 52B, 185-200.
    • Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Collins, D. R., Flagan, R. C., Seinfeld, J. H., Gass o´, S., Hegg, D. A., O¨str o¨m, E., Noone, K. J., Welton, E. J., Voss, K., Gordon, H. R., Formenti, P. and Andreae, M. O. 2000. Clear sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements. T ellus 52B, 568-593.
    • Smirnov, A., Holben, B. N., Slutsker, I., Welton, E. J. and Formenti, P. 1998. Optical properties of Saharan dust during ACE-2. J. Geophys. Res. 103D, 28,079-28,092.
    • Swietlicki, E., Zhou, J., Berg, O. H., Hameri, K., Vakeva, M., Makela, J., Covert, D. S., Dusek, U., Busch, B., Wiedensohler, A. and Stratmann, F. 2000. Hygroscopic properties of aerosol particles in the eastern Northern Atlantic during ACE-2. T ellus B, this issue.
    • Tang, I. N., Tridico, A. C. and Fung, K. H. 1997. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. 102, 23,269-23,275.
    • Tomasi, C., Marani, S., Vitale, V., Wagner, F., Cacciari, A. and Lupi, A. 2000. Precipitable water evaluations from infrared sun-photometric measurements analysed using the atmospheric hygrometry technique. T ellus 52B, 734-749.
    • Verver G., Raes, F., Vogelezang, D. and Johnson, D. 2000. The second Aerosol Characterization Experiment (ACE-2): meteorological and chemical context, T ellus 52B, 126-140.
    • Vitale, V., Tomasi, C., Von Hoyningen-Huene, W., Bonafe', U., Marani, S., Lupi, A., Cacciari, A. and Ruggeri, P. 2000. Spectral measurements of aerosol particle extinction in the 0.4-3.7 mm wavelength range, performed at Sagres with the IR-RAD sun-radiometer. T ellus 52B, 716-733.
    • Von Hoyningen-Huene, W., Schmidt, T., Herber, A. and Silva, A. M. 1998. Climate-relevant columnar optical aerosol parameters obtained during ACE-2 CLEARCOLUMN and their influence on the shortwave radiative balance. J. Aerosol Sci. 29, S269-S270.
    • Von Hoyningen-Huene, W., Schmidt, T., Freitag, M., Burrows, P. and Silva, A. M. 1999. Closures between ground-based and spaceborne data for the development of retrieval procedures for aerosols properties. J. Aerosol Sci. 30, S431-S432.
    • Wagner, F., M u¨ller, D., Ansmann, A., Weise, D. and Althausen, D. 1998. Comparison of aerosol properties derived f rom lidar, sun photometer and in situ observations during the aerosol characterization experiment 2. 19th International Laser radar Conference. Annapolis, NASA/CP-1998-207671/PT1, pp. 457-460.
    • Welton, E. J., Voss, K. J., Gordon, H. R., H. Maring, Smirnov, A., Holben, B., Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Formenti, P. and Andreae, M. O. 2000. Ground-based lidar measurements of aerosols during ACE-2: instrument description, results, and comparisons with other groundbased and airborne measurements. T ellus 52B, 636-651.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from