LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Frank Maier; Jörg Bendix; Boris Thies (2013)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, meteorology, radiation fog, radiation fog, double sum curve analysis, life cycle of radiation fog, evolutionary stages of radiation fog, evolutionary stages of radiation fog, double sum curve analysis, life cycle of radiation fog
An objective classification of radiation fog in distinct evolutionary stages during its life cycle based on reliable criteria is essential for various applications, for example for numerical fog modelling and fog forecasting. However, there have been – up to now – merely qualitative approaches for the distinction of different evolutionary stages in radiation fog. Measurements of the microphysical fog properties with an optical particle counter obtained from droplet measurement technologies together with recordings of the horizontal visibility (VIS) are statistically analyzed to determine individual evolutionary stages of radiation fog with consistent microphysical properties. The developed three-stage approach is based on a statistical change point analysis of the double sum curves of the VIS, the liquid water content, the droplet concentration and the mean radius of the drop size distributions. It could be shown that each of the three recorded radiation fog occurrences could be split into three consecutive phases from formation to dissipation, regardless whether the VIS or the microphysical properties were considered. Having featured consistent microphysical patterns, it could be assumed that the three separated phases of the single fog occurrence could be aggregated for radiation fog. Although this classification is statistically reliable, the dataset still has to be extended for a generalization concerning the separated evolutionary stages.Keywords: radiation fog, double sum curve analysis, life cycle of radiation fog, evolutionary stages of radiation fog(Published: 7 June 2013)Citation: Tellus B 2013, 65, 19971, http://dx.doi.org/10.3402/tellusb.v65i0.19971
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • AK KLIWA. 2002. Long-run behaviour of flood flows in Baden-Wu¨ rttemberg and Bavaria. In: KLIWA-reports 2 (ed. AK KLIWA). Stork Druck, Karlsruhe, pp. 1 98.
    • Bendix, J. 1998. Ein neuer Methodenverbund zur Erfassung der klimatologisch-lufthygienischen Situation von NordrheinWestfalen. Untersuchungen mit Hilfe boden- und satellitengestu¨ tzter Fernerkundung und numerischer Modellierung. In: Bonner Geographische Abhandlungen 98 (ed. W. Schenk). E-Ferger Verlag, Bonn, Germany, pp. 1 183.
    • Bendix, J. 2002. A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmos. Res. 64, 3 18.
    • Bennett, A. J., Gaffard, C., Oakley, T. and Moyna, B. 2009. Cloud radar initial measurements from the 94 GHz FMCW cloud radar. In: Proceedings of the 8th International Symposium on Tropospheric Profiling, 19 23 October, Delft, pp. 1 8.
    • Bergot, T. and Gue´ dalia, D. 1994. Numerical forecasting of radiation fog. Part I. Numerical model and sensitivity tests. Mon. Weather. Rev. 122, 1218 1230.
    • Brown, R. and Roach, W. T. 1976. The physics of radiation fog. II. A numerical study. Q. J. Roy. Meteorol. Soc. 102, 335 354.
    • DMT. 2012. Cloud Droplet Probe (CDP). Manual. DOC-0029. Rev N-3. DMT, Boulder, CO, pp. 1 55.
    • Dupont, J. C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N. and co-authors. 2012. Stratus fog formation and dissipation. A 6-day case study. Bound. Lay. Meteorol. 143, 207 225.
    • Duynkerke, P. G. 1999. Turbulence, radiation and fog in Dutch stable boundary layers. Bound. Lay. Meteorol. 90, 447 477.
    • DWD. 2011. General weather situations of Europe. Online at: http://www.dwd.de/GWL. Last page view: 10/24/2012 Findlater, J. 1985. Field investigations of radiation fog formation at outstations. Meteorol. Magaz. 114, 187 201.
    • Fitzjarrald, D. R. and Lala, G. G. 1989. Hudson Valley fog environments. J. Appl. Meteorol. 28, 1303 1328.
    • Fuzzi, S., Facchini, M. C., Orsi, G., Lind, J. A., Wobrock, W. and co-authors. 1992. The Po Valley fog experiment 1989. An overview. Tellus. 44B, 448 468.
    • Fuzzi, S., Laj, P., Ricci, L., Orsi, G., Heintzenberg, J. and coauthors. 1998. Overview of the Po Valley fog experiment 1994 (CHEMDROP). Contr. Atmos. Phys. 71, 3 19.
    • Gultepe, I., Mu¨ ller, M. D. and Boybeyi, Z. 2006. A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteorol. Clim. 45, 1469 1480.
    • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S. and co-authors. 2009. The fog remote sensing and modeling field project. Bull. Am. Meteorol. Soc. 90, 341 359.
    • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A. and co-authors. 2007. Fog research. A review of past achievements and future perspectives. Pure. Appl. Geophys. 164, 1121 1159.
    • Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D. and coauthors. 2010. PARISFOG. Shedding new light on fog physical processes. Bull. Am. Meteorol. Soc. 91, 767 783.
    • Hansel, N. and Scha¨ fer, U. 1970. The double sum analysis. Water management-water technology 20, 145 149.
    • Hess, P. and Brezowsky, H. 1977. Catalog of the general weather situations of Europe (1881 1976). Reports of the German Weather Service 113, 1 54.
    • Huggard, P. G., Oldfield, M. L., Moyna, B. P., Ellison B. N., Matheson, D. N. and co-authors. 2008. 94 GHz FMCW cloud radar. In: Proceedings of the SPIE symposium on millimetre wave and terahertz sensors and technology, 15 18 September, Cardiff, pp. 1 6.
    • James, P. M. 2007. An objective classification method for Hess and Brezowsky Grosswetter-lagen over Europe. Theor. Appl. Climatol. 88, 17 42.
    • Juisto, J. E. and Lala, G. G. 1983. The fog project 1982. In: Proceedings of 9th Conference on Aerospace and Aeronautical Meteorology, 6 9 June, Omaha, NE, AMS, pp. 95 98.
    • Kendall, M. G. and Stuart, S. 1969. Advanced theory of statistics. Part 1. Distribution theory. (ed. M G. Kendall). Griffin, London, pp. 1 439.
    • Lala, G. G., Jiusto, J. E., Meyer, M. B. and Komfein, M. 1982. Mechanisms of radiation fog formation on four consecutive nights. In: Preprints of Conference on Cloud Physics, 15 18 November, Chicago, IL, AMS, pp. 9 11.
    • Lala, G. G., Mandel, E. and Jiusto, J. E. 1975. A numerical investigation of radiation fog variables. J. Atmos. Sci. 32, 720 728.
    • Liu, D., Yang, J., Niu, S. and Li, Z. 2011. On the evolution and structure of a radiation fog event in Nanjing. Adv. Atmos. Sci. 28, 223 237.
    • Maier, F., Thies, B. and Bendix, J. 2012. Simulating Z LWC relations in natural fogs with radiative transfer calculations for future application to a cloud radar profiler. Pure. Appl. Geophys. 169, 793 807.
    • Mann, H. B. 1945. Nonparametric tests against trend. Econometrica. 13, 245 259.
    • Mann, H. B. and Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 55 60.
    • Meyer, M. B., Lala, G. G. and Jiutso, J. E. 1986. FOG-82. A cooperative field study of radiation fog. Bull. Am. Meteorol. Soc. 67, 825 832.
    • Nakanishi, M. 2000. Large-eddy simulation of radiation fog. Bound. Lay. Meteorol. 94, 461 493.
    • Pettitt, A. N. 1979. A non-parametric approach to the changepoint problem. J. R. Stat. Soc. 28, 126 135.
    • Pilie´ , R., Eadie, W., Mack, E., Rogers, C. and Kocmond, W. 1972. Project fog drops. Part 1. Investigations of warm fog properties. NASA Contractor Report, No. 2078. Buffalo, New York: Cornell Aeronautical Laboratory, Inc., 1 149.
    • Pilie´ , R. J., Mack, E. J., Kocmond, W. C., Eadie, W. J. and Rogers, C. W. 1975a. The life cycle of valley fog. Part II. Fog microphysics. J. Appl. Meteorol. 14, 364 374.
    • Pilie´ , R. J., Mack, E. J., Kocmond, W. C., Rogers, C. W. and Eadie, W. J. 1975b. The life cycle of valley fog. Part I. Micrometeorological characteristics. J. Appl. Meteorol. 14, 347 363.
    • Price, J. 2011. Radiation fog. Part I. Observations of stability and drop size distributions. Bound. Lay. Meteorol. 139, 167 191.
    • Roach, W. T., Brown, R., Caughey, R., Garlands, J. and Readings, C. J. 1976. The physics of radiation fog. I. A field study. Q. J. Roy. Meteorol. Soc. 102, 313 333.
    • Scho¨ nwiese, C. D. 2006. Applied statistics for meteorologists and earth scientists. Borntra¨ ger, Berlin, pp. 1 302.
    • Schulze-Neuhoff, H. 1976. Detailed analysis of fog based on additional 420 weather stations. Meteorol. Rundsch. 29, 75 84.
    • Stewart, D. A. and Essenwanger, O. M. 1982. A survey of fog and related optical propagation characteristics. Rev. Geophys. 20, 481 495.
    • Terradellas, E. and Bergot, T. 2008. Comparison between two single-column models designed for short-term fog and lowclouds forecasting. Fisica de la Tierra. 19, 189 203.
    • Turton, J. D. and Brown, R. 1987. A comparison of a numerical model of radiation fog with detailed observations. Q. J. Roy. Meteorol. Soc. 113, 37 54.
    • Wendisch, M., Mertes, S., Heintzenberg, J., Wiedensohler, A., Schell, D. and co-authors. 1998. Drop size distribution and LWC in Po Valley Fog. Contr. Atmos. Phys. 71, 87 100.
    • WMO, (ed.). 1992. International Meteorological Vocabulary. Vol. 182. Geneva: WMO; pp. 1 276.
    • WMO. 2003. The WCDMP 'guidelines' series. Technical Document 1186. Geneva: WMO; pp. 1 50.
    • Zhou, B. B. and Ferrier, B. S. 2008. Asymptotic analysis of equilibrium in radiation fog. J. Appl. Meteorol. 47, 1704 1722.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article