Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wu, Longtao; Martin, Jonathan E.; Petty, Grant W. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
The piecewise potential vorticity (PV) inversion method developed by Davis and Emanuel (1991) is used to diagnose the development processes of a polar low over the Sea of Japan in December 2003. The synoptic scale-balanced flows associated with the polar low are successfully captured using the inversion method. It is shown that, antecedent to the development of the polar low, a positive lower-tropospheric temperature anomaly was induced by the approach of a positive tropopause-level PV anomaly over the northern Sea of Japan. The analysis suggests that the polar low was initiated as a result of the combined effect of the positive PV anomaly near the tropopause and the near-surface positive temperature anomaly. The rapid height falls in the lower troposphere were primarily contributed by the upper tropospheric PV anomaly. Further intensification of the polar low was afforded by latent heat release associated with cloud and precipitation processes. After the polar low moved over northern Honshu, quick dissipation was primarily rendered by the thinning and elongating of the upper level PV anomaly that led to a rapid reduction of the lower troposphere height perturbations associated with it.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bracegirdle, T. J. and Gray, S. L. 2009. The dynamics of a polar low assessed using potential vorticity inversion. Quart. J. R. Meteorol. Soc. 135, 880-893.
    • Bresch, J. F., Reed, R. J. and Albright, M. D. 1997. A Polar-Low development over the Bering Sea: analysis, numerical simulation, and sensitivity experiments, Mon. Wea. Rev. 125, 3109-3130.
    • Bretherton, F. P. 1966. Baroclinic instability and the shortwave cutoff in terms of potential vorticity. Quart. J. R. Meteorol. Soc. 92, 335- 345.
    • Cammas, J.-P., Keyser, D., Lackmann, G. and Molinari, J. 1994. Diabatic redistribution of potential vorticity accompanying the development of an outflow jet within a strong extratropical cyclones. In: Proc. Int. Symp. on Life Cycles of Extratropical Cyclones, Volume II, Aase Grafiske A/S, Bergen, Norway, 403-409.
    • Charney, J. 1955. The use of the primitive and balance equations. Tellus 7, 22-26.
    • Davis, C. A. and Emanuel, K. A. 1991. Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev. 119, 1929-1953.
    • Davis, C. A., Stoelinga, M. T. and Kuo, Y.-H. 1993. The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev. 121, 2309-2330.
    • Deng, A., Seaman, N. L., Hunter, G. K. and Stauffer, D. R. 2004. Evaluation of interregional transport using the MM5-SCIPUFF system. J. Appl. Meteorol. 43, 1864-1886, doi: 10.1175/JAM2178.1 Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077-3107.
    • Dudhia, J., Hong, S.-Y. and Lim, K.-S. 2008. A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteorol. Soc. Japan, 86A, 33-44.
    • Ertel, H. 1942. Ein Neuer hydrodynamischer Wirbelsatz. Meteorol. Z., 59, 271-281.
    • Grøna˚s, S. and Kvamstø, N. G. 1995. Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus, 47A, 797-814.
    • Guo, J. T., Fu, G., Li, Z. L., Shao, L. M., Duan, Y. H. and co-authors. 2007. Analyses and numerical modeling of a polar low over the Japan Sea on 19 December 2003. Atmos. Res., 85(3-4), 395-412.
    • Harrold, T. W. and Browning, K. A. 1969. The polar low as a baroclinic disturbance. Quart. J. R. Meteorol. Soc, 95, 710-723.
    • Hong, S.-Y. and Lim, J.-O. J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6), J. Korean Meteorol. Soc., 42, 129- 151.
    • Hong, S.-Y., Noh, Y. and Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
    • Hoskins B. J, McIntyre, M. E. and Robertson, A. W 1985. On the use and significance of isentropic potential vorticity maps. Quart. J. R. Meteorol. Soc., 111, 877-946.
    • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.
    • Kain, J. S. and Fritsch, J. M. 1993. Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Am. Meteorol. Soc., 165-170.
    • Korner, S. O. and Martin, J. E. 2000. Piecewise frontogenesis from a potential vorticity perspective: methodology and a case study. Mon. Wea. Rev. 128, 1266-1288.
    • Mansfield, D. A., 1974. Polar lows: the development of baroclinic disturbances in cold air outbreaks. Quart. J. R. Meteorol. Soc. 100, 541- 554.
    • Martin, J. E. and Marsili, N. 2002. Surface cyclolysis in the North Pacific Ocean. Part II: piecewise potential vorticity diagnosis of a rapid cyclolysis event. Mon. Wea. Rev. 130, 1264-1281.
    • Martin, J. E. and Otkin, J. A. 2004. The rapid growth and decay of an extratropical cyclone over the central Pacific Ocean. Wea. Forecast. 19, 358-376.
    • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663-16682.
    • Montgomery, M. T. and Farrell, B. F. 1992. Polar low dynamics. J. Atmos. Sci., 49, 2484-2505.
    • Morgan, M. C. and Nielsen-Gammon, J. 1998. Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 2555-2579.
    • Nordeng, T. E. and Rasmussen, E. A. 1992. A most beautiful polar low. A case study of a polar low development in the Bear Island region. Tellus, 44A, 81-99.
    • Posselt, D. J. and Martin, J. E. 2004. The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578-599.
    • Rasmussen, E. A. 1979. Polar low as an extratropical CISK disturbance. Quart. J. R. Meteorol. Soc. 105, 531-549.
    • Rasmussen, E. A. and Turner, J. 2003. Polar lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, Cambridge, UK, 612 pp.
    • Rasmussen, E. A., Pedersen, T. S., Pedersen, L. F. and Turner, J. 1992. Polar lows and arctic instability lows in the Bear Island region. Tellus, 44A, 133-154.
    • Rossby, C. G. 1940. Planetary flow patterns in the atmosphere. Quart. J. R. Meteorol. Soc. 66, 68-87.
    • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M. and co-authors. 2008. A description of the advanced research WRF version 3. NCAR/TN-468+STR, 126 pp.
    • Stoelinga, M. T. 1996. A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849-874.
    • Sutcliffe, R. 1947. A contribution to the problem of development. Quart. J. R. Meteorol. Soc. 73, 370-383.
    • Trenberth, K. E. 1978. On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev. 106, 131- 137.
    • Wu, L. T. and Petty, G. W. 2010. Intercomparison of bulk microphysics schemes in model simulations of Polar Lows. Mon. Wea. Rev. 138, 2211-2228.
    • Yanase, W., Fu, G., Niino, H. and Kato, T. 2004. A Polar Low over the Japan Sea on 21 January 1997. Part II: a numerical study. Mon. Wea. Rev. 132, 1552-1574.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from