Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nevison, C.; Gupta, V.; Klinger, L. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The daisyworld model of Watson and Lovelock demonstrated that a simple biological feedback system involving coupling between black and white daisies and their physical environment can stabilize planetary temperature over a wide range of solar luminosity. Here, we show that the addition of a differential equation for temperature to the original daisyworld model leads to periodic oscillations in temperature about a homeostatic mean. These oscillations, in which the model alternates between dominance by either black or white daisies, arise from the internal dynamics of the system rather than from external forcing. An important criterion for the oscillations to occur is that solar luminosity be within the range in which both daisy species are viable. A second important criterion is that the ratio of the timescales for daisy population turnover and climate system thermal response be bounded. While internally driven oscillations are well known in predator–prey biological models and in coupled ocean energy balance– cryosphere models, the present study shows that such oscillations also can arise in a model of the biosphere coupled to its physical environment. The potential significance of this result to planet Earth and the science of geophysiology is discussed.DOI: 10.1034/j.1600-0889.1999.t01-3-00005.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barnett, T. P., Dumenil, L., Schlese, U. and Roeckner, E. 1988. The eVect of Eurasian snow cover on global climate. Science 239, 504-507.
    • Battisti, D. S. and Hirst, A. C. 1989. Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 46, 1687-1712.
    • Bonan, G. B., Pollard, D. and Thompson, S. L. 1992. EVects of boreal forest vegetation on global climate. Nature 359, 716-718.
    • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I. and Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic holocene and glacial climates. Science 278, 1257-1266.
    • Budyko, M. I. 1969. The eVect of solar radiation variations on the climate of the Earth. T ellus 21, 611-619.
    • Falkowski, P. G., Kim, Y., Kolber, Z., Wilson, C., Wirick, C. and Cess, R. 1992. Natural versus anthropogenic factors aVecting low-level cloud albedo over the North Atlantic. Science 256, 1311-1313.
    • Gal-Chen, T. and Schneider, S. 1976. Energy-balance climate modeling: Comparison of radiative and dynamic feedback mechanisms. T ellus 28, 108-121.
    • Gallimore, R. G. and Kutzbach, J. E. 1996. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381, 503-505.
    • Ghil, M. and Childress, S. 1987. T opics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics. Springer-Verlag, New York.
    • Ghil, M. and Le Treut, H. 1981. A climate model with cryodynamics and geodynamics. J. Geophys. Res. 86, 5262-5270.
    • Goel, N. S., Maitra, S. C. and Montroll, E. W. 1971. On the Volterra and other nonlinear models of interacting populations. Rev. Modern Phys. 43, 231.
    • Harvey, L. D. D. and Schneider, S. H. 1984. Sensitivity of internally generated climate oscillations to ocean model formulation. Proceedings of the Symposium on Milankovitch and Climate. NATO ASI Series (eds. Berger, A., Imbrie, J., Hays, J., Kukla, S. and Saltzman, B.). D. Reidel, Hingham, Mass., 653-667.
    • Jascourt, S. D. and Raymond, W. H. 1992. Comments on ''Chaos in daisyworld'' by X. Zeng et al. T ellus 44B, 243-246.
    • Kalle´n, E., Crafoord, C. and Ghil, M. 1979. Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci. 36, 2292-2302.
    • Keigwin, L. D. 1996. The little ice age and medieval warm period in the Sargasso Sea. Science 274, 1504-1508.
    • Klinger, L. F. 1991. Peatland formation and ice ages: A possible gaian mechanism related to community succession. Scientists on Gaia (eds. Schneider, S. H. and Boston, P. J.). The MIT Press, Cambridge, MA, 247-255.
    • Klinger, L. F. and Short, S. K. 1996. Succession in the Hudson Bay Lowland, Northern Ontario, Canada. Arctic and Alpine Res. 28, 172-183.
    • Lovelock, J. E. 1995. Geophysiology, the science of Gaia. Rev. of Geophys. 27, 215-222.
    • Lovelock, J. E. and Kump, L. R. 1994. Failure of climate regulation in a geophysiological model. Nature 369, 732-734.
    • Peixoto, J. P. and Oort, A. H. 1992. Physics of climate. Am. Inst. of Phys., College Park, MD.
    • Penland, C. and Sardeshmukh, P. D. 1995. The optimal growth of tropical sea surface temperature anomalies. J. Climate 8, 1999-2024.
    • Pollard, D. 1982. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296, 334-338.
    • Raval, A. and Ramanathan, V. 1989. Observational determination of the greenhouse eVect. Nature 342, 758-761.
    • Rind, D., Chiou, E.-W., Chu, W., Larsen, J., Oltmans, S., Lerner, J., McCormick, M. P. and McMaster, L. 1991. Positive water vapour feedback in climate models confirmed by satellite data. Nature 349, 500-503.
    • Sellers, W. D. 1969. A global climatic model based on the energy balance of the earth-atmosphere system. J. Applied Meteorology 8, 392-400.
    • Sirois, L. 1992. The transition between boreal forest and tundra. A systems analysis of the global boreal forest (eds. Shugart, H. H., Leemans, R. and Bonan, G. B.). Cambridge University Press, New York, 196-215.
    • Suarez, M. J. and Schopf, P. S. 1988. A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283-3287.
    • Thompson, S. L. and Schneider, S. H. 1979. A seasonal zonal energy balance climate model with an interactive lower layer. J. Geophys. Res. 84, 2401-2414.
    • Walker, J. C. G, Hays, P. and Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of earth's surface temperature. J. Geophys. Res. 86, 9776-9782.
    • Watson, A. J. and J. E. Lovelock. 1983. Biological homeostasis of the global environment: the parable of daisyworld. T ellus 35B, 284-289.
    • Zeng, X., Pielke, R. A. and Eykholt, R. 1990. Chaos in daisyworld. T ellus 42B, 309-318.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from