LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fumiyoshi Kondo; Osamu Tsukamoto (2012)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: CO2 flux; eddy covariance technique; open-path gas analyzer; closed-path gas analyzer; WPL correction, Meteorology. Climatology, QC851-999, eddy covariance technique, open-path gas analyser, CO2 flux, WPL correction, closed-path gas analyser

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::High Energy Astrophysical Phenomena
Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.Keywords: CO2flux; eddy covariance technique; open-path gas analyser; closed-path gas analyser; WPL correction(Published: 11 April 2012)Citation: Tellus B 2012, 64, 17511, DOI: 10.3402/tellusb.v64i0.17511
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E. and Fairall, C. W. 1998. Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Ocean. Technol. 15, 547 562.
    • Grelle, A. and Lindroth, A. 1996. Eddy-correlation system for long-term monitoring of fluxes of heat, water vapor and CO2. Glob. Change Biol. 2, 297 307.
    • Hignett, P. 1992. Corrections to temperature measurements with a sonic anemometer. Boundary-Layer Meteorol. 61, 175 187.
    • Ho¨ gstro¨ m, U., Bergstro¨ m, H., Smedman, A.-S., Halldin, S. and Lindroth, A. 1989. Turbulent exchange above a pine forest, I: fluxes and gradients. Boundary-Layer Meteorol. 49, 197 217.
    • Ibrom, A., Dellwik, E., Jensen, N. O., Flyvbjerg, H. and Pilegaard, K. 2007a. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric. For. Meteorol. 147, 140 156.
    • Ibrom, A., Dellwik, E., Larsen, S. E. and Pilegaard, K. 2007b. On the use of the Webb Pearman Leuning theory for closed-path eddy correlation measurements. Tellus 59B, 937 946.
    • Jacobs, C. M. J., Kohsiek, W. and Oost, W. A. 1999. Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus 51B, 629 641.
    • Jones, E. P. and Smith, S. D. 1977. A first measurement of sea-air CO2 flux by eddy correlation. J. Geophys. Res. 82, 5990 5992.
    • Kondo, F. and Tsukamoto, O. 2007. Air-sea CO2 flux by eddy covariance technique in the equatorial Indian Ocean. J. Oceanogr. 63, 449 456.
    • Lee, X., Black, A. and Novak, M. D. 1994. Comparison of flux measurements with open- and closed-path gas analyzers above an agricultural field and a forest floor. Boundary-Layer Meteorol. 67, 195 202.
    • Lenschow, D. H. and Raupach, M. R. 1991. The attenuation of fluctuations in scalar concentration through sampling tubes. J. Geophys. Res. 96D, 15259 15268.
    • Leuning, R. 2007. The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. BoundaryLayer Meteorol. 123, 263 267.
    • Leuning, R. and King, K. M. 1992. Comparison of eddycovariance measurements of CO2 fluxes by open- and closedpath CO2 analysers. Boundary-Layer Meteorol. 59, 297 311.
    • Leuning, R. and Moncrieff, J. 1990. Eddy-covariance CO2 flux measurements using open- and close-path CO2 analysers: corrections for analyzer water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol. 53, 63 76.
    • Liss, P. S. and Merlivat, L. 1986. Air-sea gas exchange rates: introduction and synthesis. In: The role of air-sea exchange in geochemical cycles (eds. P. Buat-Manard and D. Reidel). Norwell, MA, pp. 113 127.
    • Massman, W. J. and Tuovinen, J.-P. 2006. An analysis and implications of alternative methods of deriving the density (WPL) terms for eddy covariance flux measurements. BoundaryLayer Meteorol. 121, 221 227.
    • McGillis, W. R., Edson, J. B., Hare, J. E. and Fairall, C. W. 2001. Direct covariance air-sea CO2 fluxes. J. Geophys. Res. 106C, 16729 16745.
    • McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P. and co-authors. 2004. Air-sea CO2 fluxes in the equatorial pacific. J Geophys. Res. 109, C08S02. DOI: 10.1029/2003JC002256.
    • McMillen, R. T. 1988. An eddy correlation technique with extended applicability non-simple terrain. Boundary-Layer Meteorol. 43, 231 245.
    • Miller, S. D., Marandino, C. and Saltzman, E. S. 2010. Ship-based measurement of air-sea CO2 exchange by eddy covariance. J Geophys. Res. 115, D02304. DOI: 10.1029/2009JD012193.
    • Murata, A. and Takizawa, T. 2003. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Cont. Shelf Res. 23, 753 776.
    • Ohtaki, E., Tsukamoto, O., Iwatani, Y. and Mitsuta, Y. 1989. Measurements of the carbon dioxide flux over the ocean. J. Meteorol. Soc. Japan 67, 541 554.
    • Ono, K., Hirata, R., Mano, M., Miyata, A., Saigusa, N. and coauthors. 2007. Systematic differences in CO2 fluxes measured by open- and closed-path eddy covariance systems: influence of air density fluctuations resulting from temperature and water vapor transfer. J. Agric. Meteorol. 63, 139 155.
    • Prytherch, J., Yelland, M. J., Pascal, R. W., Moat, B. I., Skjelvan, I. and co-authors. 2010. Direct measurements of the CO2 flux over the ocean: development of a novel method. Geophys. Res. Lett. 37, L03607. DOI: 10.1029/2009GL041482.
    • Sahl e´e, E. and Drennan, W. M. 2009. Measurements of damping of temperature fluctuations in a tube. Boundary-Layer Meteorol. 132, 339 348.
    • Sarma, V. V. S. S., Abe, O., Honda, M. and Saino, T. 2010. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen. J. Oceanogr. 66, 505 512.
    • Serrano-Ortiz, P., Kowalski, A. S., Domingo, F., Ruiz, B. and Alados-Arboledas, L. 2008. Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance. Boundary-Layer Meteorol. 126, 209 218.
    • Serrano-Oriz, P., Kowalski, A. S., Domingo, F., Ruiz, B. and Alados-Arboledas, L. 2007. Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance. Boundary-Layer Meteorol. 126, 209 218.
    • Smith, S. D. and Jones, E. P. 1985. Evidence for wind-pumping of air-sea gas exchange based on direct measurements of CO2 fluxes. J. Geophys. Res. 90C, 869 875.
    • Suyker, A. E. and Verma, S. B. 1993. Eddy correlation measurements of CO2 flux using a closed-path sensor: theory and field test against an open-path sensor. Boundary-Layer Meteorol. 64, 391 407.
    • Takahashi, S., Kondo, F., Tsukamoto, O., Ito, Y., Hirayama, S. and co-authors. 2005. On-board automated eddy flux measurement system over open ocean. SOLA 1, 37 40.
    • Verma, S. B., Ullman, F. G., Billesbach, D., Clement, R. J.,Kim, J. and co-authors. 1992. Eddy correlation measurements of methane flux in a northern peatland ecosystem. Boundary-Layer Meteorol. 58, 289 304.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97C, 7373 7382.
    • Watanabe, T., Yamanoi, K. and Yasuda, Y. 2000. Testing of the bandpass eddy covariance method for a long-term measurement of water vapour flux over a forest. Boundary-Layer Meteorol. 96, 473 491.
    • Webb, E. K., Pearman, G. I. and Leuning, R. 1980. Correlation of flux measurement for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 106, 85 100.
    • Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203 215, DOI:10.1016/0304-4203(74) 90015-2.
    • Yasuda, Y. and Watanabe, T. 2001. Comparative measurements of CO2 flux over a forest using closed-path and open-path CO2 analysers. Boundary-Layer Meteorol. 100, 191 208.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article