LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shibistova, Olga; Lloyd, Jon; Evgrafova, Svetlana; Savushkina, Nadja; Zrazhevskaya, Galina; Arneth, Almut; Knohl, Alexander; Kolle, Olaf (2002)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Rates of CO2 efflux from the floor of a central Siberian Scots pine (Pinus sylvestris) forest were measured using a dynamic closed chamber system and by a eddy covariance system placed 2.5 m above the forest floor. Measurements were undertaken for a full growing season: from early May to early October 1999. Spatial variability as determined by the chamber measurements showed the rate of CO2 efflux to depend on location, with rates from relatively open areas (“glades”) only being about 50% those observed below or around trees. This was despite generally higher temperatures in the glade during the day. A strong relationship between CO2 efflux rate and root density was observed in early spring, suggesting that lower rates in open areas may have been attributable to fewer roots there. Continuous measurements with the eddy covariance system provided good temporal coverage. This method, however, provided estimates of ground CO2 efflux rate rates that were about 50% lower than chamber measurements that were undertaken in areas considered to be representative of the forest as a whole. An examination of the seasonal pattern of soil CO2 efflux rates suggests that much of the variability in CO2 efflux rate could be accounted for by variations in soil temperature. Nevertheless, there were also some indications that the soil water deficits served to reduce soil CO2 efflux rates during mid-summer. Overall the sensitivity of CO2 efflux rate to temperature seems to be greater for this boreal ecosystem than has been the case for most other studies.DOI: 10.1034/j.1600-0889.2002.01348.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albert, M. R. and Perron, F. E. 2000. Ice layer and surface crust permeability in a seasonal snow pack. Hydrol. Processes 14, 3207-3214.
    • Arneth, A., Kelliher, F. M., Gower, S. T., Scott, N. A., Byers, J. N. and McSeveny, T. M. 1998. Environmental variables regulating soil carbon dioxide efflux following clearcutting of a Pinus radiata D. Don plantation. J. Geophys. Res. 103, 5695-5705.
    • Baldocchi, D. 1997. Flux footprints within and over forest canopies. Boundary-Layer Meteorol. 85, 273-292.
    • Bird, M., Santruckova, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnikov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue.
    • Bobkova, K. S. 1987. Biological productivity of north-eastern European forests. Nauka, Leningrad, 156 pp. (in Russian).
    • Brooks, P. D., Williams, M. W. and Schmidt, S. K. 1996. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32, 93-113.
    • Brown, D., MacFarlane, J. D. and Kershaw, K. A. 1983. Physiological-environmental interactions in lichens XVI. A re-examination of the resaturation respiration phenomena. New Phytol. 93, 237-246.
    • Buchmann, N. 2001. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology Biochem. 32, 1625-1635.
    • Cochran, V. L., Elliot, L. F. and Lewis, C. F. 1989. Soil biomass and enzyme activity in subarctic agricultural and forest soils. Biol. Fert. Soils 7, 283-288.
    • Colbeck, S. C. and Anderson, E. A. 1982. The permeability of a melting snow cover. Wat. Resour. Res. 18, 904-908.
    • Constantin, J., Grelle, A., Ibrom, A. and Morgenstern, K. 1999. Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method. Agric. For. Meteorol. 98/99, 629- 643.
    • Domisch, T., Finer, L. and Lehto, T. 2001. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol. 21, 465-472.
    • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. BoundaryLayer Meteorol. 74, 321-340.
    • Fang, C. and Moncrieff, J. B. 1998. An opened-top chamber for measuring soil respiration and the influence of pressure differences on CO2 efflux measurement. Functional Ecol. 12, 319-330.
    • Gauslaa, Y. and Solhaug, K. A. 1996. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Functional Ecology 10, 344-354.
    • Grogan, P. and Chapin, F. S., III, 1999. Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2, 451-459.
    • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and critical evaluation of accuracy. Global Change Biol. 2, 169- 182.
    • Gulledge, J. and Schimel, J. P. 2000. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems 3, 269-282.
    • Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115-146.
    • Healy, R. W., Striegl, R. J., Hutchinson, G. L. and Livingston, G. P. 1996. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. Soil. Sci. Soc. Am. J. 60, 740- 747.
    • Helal, H. M. and Sauerbeck, D. 1991. Short term determination of the actual respiration rate in intact plant roots. In: Plant roots and their environment (eds. B. L. Mc-Michael, and H. Persson). Elsevier Applied Science, London, 88- 92.
    • Ho¨gberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Ho¨gberg, M. N., Nyberg, G., OttossonLo¨fvenius, M. O. and Read, D. J. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789-792.
    • Janssens, I. A., Kowalski, A. S. and Caulemans, R. 2001. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol. 106, 61- 69.
    • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variations of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953- 28966.
    • Kelliher, F. M., Lloyd, J., Arneth, A., Lo¨hker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlagin, A., Zeigler, W., Bauer, G., Wong, S. C. and Schulze, E.-D. 1999. Carbon dioxide efflux from the floor of a central Siberian pine forest. Agric. For. Meteorol. 94, 217-232.
    • Kershaw, K. A. 1977. Studies on lichen-dominated systems. XX. An examination of some aspects of the northern boreal lichen woodlands in Canada. Can. J. Bot. 55, 393-410.
    • Law, B. E., Baldocchi, D. D. and Anthoni, P. M. 1999. Below canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 94, 171-188.
    • Le Dantec, V., Epron, D. and Dufrene, E. 1999. Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant and Soil 214, 125-132.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Functional Ecol. 8, 315- 323.
    • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with plant nutrient status. Functional Ecology 10, 4-32.
    • Lloyd, J., Shibistova, O., Zolotukhine, D., Kolle, O., Arneth, A., Wirth, Ch., Styles, J. M., Tchebakova, N. M. and Schulze, E.-D. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B, this issue.
    • Mast, M. A., Wickland, K. P., Striegl, R. T. and Clow, D. W. 1998. Winter fluxes of CO2 and NH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem. Cycles 12, 607-620.
    • Melloh, R. A. and Crill, P. M. 1996. Winter methane dynamics in a temperate peatland. Global Biogeochem. Cycles 10, 247-254.
    • McMillen, R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. BoundaryLayer Meteorol. 43, 231-245.
    • Moren, A.-S. and Lindroth, A. 2000. CO2 exchange at the floor of a boreal forest. Agric. For. Meteorol. 101, 1-14.
    • Nelson, D. W. and Sommers, L. E. 1982. Total C, organic C and organic matter. Agronomy 9, 539-579.
    • Norman, J. M., Kucharik, C. J., Gower, S. T., Baldocchi, D. D., Cril, P. M., Rayment, R., Savage, K. and Sriegel, R. G. 1998. A comparison of six methods for measuring soil surface carbon dioxide fluxes. J. Geophysical Res. 102D, 28771-28777.
    • Oechel, W. C., Vourlitis, G. and Hasting, S. J. 1997. Cold season CO2 emission from arctic soils. Global Biogeochem. Cycles 11, 163-172.
    • Orchard, V. A. and Cook, F. J. 1983. Relationship between soil respiration and soil moisture. Soil Biology Biochem. 15, 447-453.
    • Palmqvist, K. 2000. Carbon economy in lichens. New Phytol. 148, 11-36.
    • Prokushkin, S. G. 1982. Mineral nutrition of Scots pine on cold soils.Nauka, Novosibirsk, 329 pp. (in Russian).
    • Raich, J. W. and Schlesinger, W. H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81-99.
    • Rayment, M. B. and Jarvis, P. G. 2000. Temporal and spatial variation of soil efflux in a Canadian boreal forest. Soil Biol. Biochem. 32, 33-45.
    • Ross, D. J., Kelliher, F. M. and Tate, K. R. 1999. Microbial processes in relation to carbon, nitrogen and temperature regimes in litter and in a sandy mineral soil from a central Siberia Pinus sylvestris L. forest. Soil Biol. Biochem. 31, 757-767.
    • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K. and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci. Plant Nutrition 46, 31-42.
    • Schulze, E.-D., Lloyd, J., Kelliher, F. M., Wirth, Ch., Rebmann, C., Lu¨hker, B., Mund, M., Knohl, A. I., Milyukova, M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 6, 703-722.
    • Schulze, E.-D., Vygodskaya, N. N., Tschebakova, N., Czimczik, C. I., Kozlov, D., Llyod, J., Mollicone, D., Myachkova, E., Sidorov, K., Varlagin, A. and Wirth, C. 2002. The Eurosiberian transect: an introduction to the experimental region. Tellus 54B, this issue.
    • Shibistova, O., Lloyd, J., Zrazhevskaya, G., Arneth, A., Kolle, O., Knohl, A., Astrakhantseva, N., Shijneva, I. and Schmerler, J. 2002. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus 54B, this issue.
    • Shvidenko, A. and Nilsson, S. 1994. What do we know about the Siberian forests. Ambio 23, 396-404.
    • Skogland, T., Lomeland, S. and Goksoyr, J. 1988. Respiratory burst after freezing and thawing of soil: Experiments with soil bacteria. Soil Biol. Biochem. 20, 851-856.
    • Soil Survey Staff. 1999. Keys to Soil Taxonomy. Pocahontas Press, Blackburg, Virginia, USA. 600 pp.
    • Sommerfeld, R. A., Musselman, R. C., Reuss, J. O. and Mosier, A. R. 1991. Preliminary measurements of CO2 in melting snow. Geophys. Res. Lett. 18, 1225-1228.
    • Tchebakova, N. M., Kolle, O., Zolotukhine, D., Arneth, A., Styles, J., Vygodskaya, N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus, 54B, this issue.
    • Thierron, V. and Laudelout, H. 1996. Contribution of root respiration to total CO2 efflux from the soil of deciduous forest. Can. J. For. Res. 26, 1142-1148.
    • Wardle, D. A. 1998. Controls on temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627-1637.
    • Winston, G. C., Sundquist, E. T, Stephens, B. B. and Trumbore, S. E. 1997. Winter CO2 fluxes in a boreal forest. J. Geophys. Res. 102, 795-804.
    • Wirth, Ch., Schulze, E-.D., Schulze, W., von Stu¨nzer-Karbe, W., Zeigler, W., Milyukova, I. M., Sogatchev, A, Varlagin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Ocecol. 121, 66-80.
    • Wirth, Ch., Schulze, E.-D., Lu¨hker, B., Grigoriev, S., Siry, M., Hardes, G., Zeigler, W., Backor, M., Bauer, G. and Vygodskaya, N. N. 2002a. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil, in press.
    • Wirth, Ch., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Aboveground net primary productivity of Siberian Scots pine forest - Magnitude and causes of variability at different time scales. Tree Physiol. in press.
    • Yanagihara, Y., Koike, T., Satoh, F., Shibata, H., Mori, S., Matsuura, Y., Zyryanova, O. A., Prokushkin, A. S., Prokushkin, S. G. and Abaimov, A. P. 2000. Soil respiration on north- and south-facing slopes in a central Siberian larch forest under changing environmental conditions. In: Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999 (ed. G. Inoue and A. Takenaka). Tsukuba, Japan, 176-183.
    • Zimov, S. A., Semiletov, I. P., Davidov, S. P., Voropaev, Y. V., Prosyannikov, C. F., Wong, S. C. and Chan, Y. H. 1993. Wintertime CO2 emission from soil of northeastern Siberia. Arctic 46, 197-204.
    • Zvyagintsev, D. G. 1991. Methods of soil microbiology and biochemistry. MSU, Moscow, 303 pp. (in Russian).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from